L. Maingot et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6213–6216
6215
Table 3
where it binds ADAMTS-5 through hydrophobic contact to
Leu379, Ile442, and Leu443. This may explain why compound 11
bearing a fluorine is less active than the more hydrophobic Chlo-
rine analogs.
Table 4 shows selectivity results on ADAMTS-4, measured log D
between 1-octanol and PBS buffer (pH 7.4) and solubility in PBS for
some selected compounds.
Both structurally close ADAMTS-4 and five cleave aggrecan.
ADAMTS-5 has been shown to be the major aggrecanase in a model
of arthritis.2 Interestingly, differences in four residues in the cata-
lytic site result in a roomier S10 pocket of ADAMTS-4. It may thus
be difficult to reach selectivity on ADAMTS-5 explaining why only
a few examples of selective compounds have been described in the
literature.7 In our series, some selectivity was obtained. Com-
pounds 10 and 18 have the best selectivity ratio for ADAMTS-5
and 14 displays on the contrary a lower IC50 on ADAMTS-4.
Compounds 10, 14, and 18 display reasonable Log D in compar-
ison with 6, that is, highly hydrophobic and poorly soluble. Com-
pound 18 is the most promising compound both in terms of
activity and physico-chemical properties.
Inhibition on ADAMTS-5 for compounds 20–22
R'
N
R
X
N
N
Compd
R
R0
X
ADAMTS-5
a
IC50
(l
M)
O
O
20
4
–SMe
–SꢀK+
>100
13
Cl
Cl
21
6
–SMe
–SꢀK+
>100
13
N
N
N
22
18
–SMe
–SꢀK+
>100
6
O
N
a
Values are means of two experiments minimum, standard deviations are 10%.
In conclusion, we have developed a series of ADAMTS-5 inhibi-
tors containing a 1,2,4-triazole-3-thiol metal binding-group. These
molecules display IC50s of 6–47 lM in a similar range to other non-
hydroxamic acid inhibitors reported in the literature. Based on the
potency, selectivity, and physico-chemical properties, we consider
the 3-(N-imidazolyl)propyl derivative 18 as a suitable starting
point for further optimization of this chemical series.
Acknowledgments
The authors thank G. Deglane, E. Carasso, and S. Delaroche for
technical support. We are grateful to the institutions that support
our laboratory (INSERM, Université Lille Nord de France, and Insti-
tut Pasteur de Lille). Data management was performed using Pipe-
line Pilot™ from Accelrys Inc. This project was supported by the
Fondation pour la Recherche Medicale; Nord-Pas-de-Calais (RA-
D07001EEA) and PRIM (Pôle de Recherche Interdisciplinaire pour
le Médicament). We thank the LARMNS NMR laboratory, Faculty
of Pharmacy Lille.
Figure 2. Binding mode of 1,2,4-triazole-3-thiol. ADAMTS-5 structure as in pdb
code 3HYG with docked compound 18.
Based on these observations, compounds 6, 10, and 18 were
docked into ADAMTS-5 (pdb code: 3HYG) in an attempt to ratio-
nalize their binding mode. The combination of several docking pro-
grams,17 has allowed the identification of a consensual binding
mode for the three compounds (Fig. 2 and Supplementary data).
Thus, the binding modes show that the thiol function complements
the chelating of the zinc ion by His410, His414, and His420. This con-
firms the poor activity of the S-methylated analogs. The 1,2,4-tria-
zole ring forms a Hydrogen bond with the backbone nitrogen of
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Leu379 18 The S10 pocket is occupied by either the –3-(N-imidazo-
.
1. Mankin, H. J.; Lippiello, L. J. J. Bone Joint Surg. 1970, 52-A, 424.
lyl)propyl moiety (compounds 10 and 18) or the –CH2-o-biphenyl
moiety (compound 6). For the former, a Hydrogen bond is formed
with the backbone Nitrogen of Thr444. This may explain the better
inhibition of 10 versus 9, that is, devoided of any H-bond acceptor
in that position. Finally, the R moiety either a 1,2,4-oxadiazole-
based biaryl (compound 18) or a chlorophenoxymethyl group
(compounds 6 and 10) always occupied the tip of the S10 pocket
2. Stanton, H.; Rogerson, F. M.; East, C. J.; Golub, S. B.; Lawlor, K. E.; Meeker, C. T.;
Little, C. B.; Last, K.; Farmer, P. J.; Campbell, I. K.; Fourie, A. M.; Fosang, A. J.
Nature 2005, 434, 648.
3. Liu, R. Q.; Trzaskos, J. M. Curr. Med. Chem. Anti-inflamm. Anti-Allergy Agents
2005, 4, 251.
4. (a) Xiang, J. S.; Hu, Y.; Rush, T. S.; Thomason, J. R.; Ipek, M.; Sum, P.-E.; Abrous,
L.; Sabatini, J. J.; Georgiadis, K.; Reifenberg, E.; Majumdar, M.; Morris, E. A.;
Tam, S. Bioorg. Med. Chem. Lett. 2006, 16, 311; (b) Cherney, R. J.; Mo, R.; Meyer,
D. T.; Wang, L.; Yao, W.; Wasserman, Z. R.; Liu, R.-Q.; Covington, M. B.;
Tortorella, M. D.; Arner, E. C.; Qian, M.; Christ, D. D.; Trzaskos, J. M.; Newton, R.
C.; Magolda, R. L.; Decicco, C. P. Bioorg. Med. Chem. Lett. 2003, 13, 1297; (c) Yao,
W.; Chao, M.; Wasserman, Z. R.; Liu, R.-Q.; Covington, M. B.; Newton, R.; Christ,
D.; Wexler, R. R.; Decicco, C. P. Bioorg. Med. Chem. Lett. 2001, 12, 101.
5. (a) Shiozaki, M.; Maeda, K.; Miura, T.; Ogoshi, Y.; Haas, J.; Fryer, A. M.; Laird, E.
R.; Littmann, N. M.; Andrews, S. W.; Josey, J. A.; Mimura, T.; Shinozaki, Y.;
Yoshiuchi, H.; Inaba, T. Bioorg. Med. Chem. Lett. 2009, 19, 1575; (b) Shiozaki, M.;
Imai, H.; Maeda, K.; Miura, T.; Yassue, K.; Suma, A.; Yokota, M.; Ogoshi, Y.; Haas,
J.; Fryer, A. M.; Laird, E. R.; Littmann, N. M.; Andrews, S. W.; Josey, J. A.; Mimura,
T.; Shinozaki, Y.; Yoshiuchi, H.; Inaba, T. Bioorg. Med. Chem. Lett. 2009, 19, 6213;
(c) Hopper, D. W.; Vera, M. D.; How, D.; Sabatini, J.; Xiang, J. S.; Ipek, M.;
Thomason, J.; Hu, Y.; Feyfant, E.; Wang, Q.; Georgiadis, K. E.; Reifenberg, E.;
Sheldon, R. T.; Keohan, C. C.; Majumdar, M. K.; Morris, E. A.; Jerauld Skotnicki,
J.; Sum, P.-E. Bioorg. Med. Chem. Lett. 2009, 19, 2487; (d) Cappelli, A.; Nannicini,
Table 4
Compd
IC50
(lM) TS5
IC50
(
lM) TS4
Log Da (pH 7.4)
Solubilitya
g/mL)
(
l
6
13
11
>30
6
12
>30
8
3.6
1.6
1.7
1.1
0.4
10
14
18
14
49
64
>30
a
Solubility and Log D are measured from a DMSO stock solution.