H. S. Rho et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6569–6571
6571
0.90 (m, 6H). 13C NMR (125 MHz, DMSO-d6): d 173.7, 165.3, 145.6, 139.6, 111.9,
43.1, 32.9, 30.8, 25.31, 25.21. FABMS: (m/e) 241 [M+H]+. Compound 5e: 1H NMR
(300 MHz, DMSO-d6): d 9.23 (s, 1H), 8.08 (s, 1H), 6.39 (s, 1H), 4.17 (d, 1H,
J = 13.2 Hz), 3.95 (d, 1H, J = 13.2 Hz), 2.83 (m, 2H), 1.65 (m, 2H), 1.38–1.27 (m,
6H), 0.86 (t, 3H, J = 6.3 Hz). 13C NMR (125 MHz, DMSO-d6): d 173.2, 158.9,
145.9, 140.1, 115.2, 54.0, 51.1, 30.7, 27.6, 21.89, 21.82, 13.8. FABMS: (m/e) 259
[M+H]+. Compound 5h: 1H NMR (300 MHz, DMSO-d6): d 9.21 (s, 1H), 8.09 (s,
1H), 6.41 (s, 1H), 4.13 (d, 1H, J = 13.2 Hz), 3.96 (d, 1H, J = 13.2 Hz), 2.72 (m, 1H),
1.98–0.72 (m, 10H). 13C NMR (125 MHz, DMSO-d6): d 173.2, 159.4, 145.9,
140.1, 115.2, 57.8, 51.7, 26.0, 25.0, 24.8, 24.5, 23.6. FABMS: (m/e) 257 [M+H]+.
Compound 6e: 1H NMR (300 MHz, DMSO-d6): d 9.32 (s, 1H), 8.11 (s, 1H), 6.49 (s,
1H), 4.58 (s, 2H), 3.26 (m, 2H), 1.69 (m, 2H), 1.50–1.22 (m, 6H), 0.86 (t, 3H,
J = 6.3 Hz). 13C NMR (125 MHz, DMSO-d6): d 173.3, 156.1, 146.1, 140.4, 116.2,
55.7, 52.4, 30.6, 27.2, 21.7, 21.0, 13.7. FABMS: (m/e) 275 [M+H]+. Compound 6h:
1H NMR (300 MHz, DMSO-d6): d 9.23 (s, 1H), 8.07 (s, 1H), 6.43 (s, 1H), 4.51 (s,
2H), 3.09 (m, 1H), 2.02 (m, 2H), 1.80 (m, 2H), 1.60–0.95 (m, 6H). 13C NMR
(125 MHz, DMSO-d6): d 173.3, 156.1, 146.1, 140.4, 116.4, 60.5, 53.0, 24.64,
24.39, 24.27. FABMS: (m/e) 273 [M+H]+.
In conclusion, we synthesized a series of kojyl thioether deriva-
tives (4a–h), sulfoxide derivatives (5d, 5e, and 5h), and sulfone
derivatives (6d, 6e, and 6h). Compound 4h, 2-(cyclohexylthiometh-
yl)-5-hydroxy-4H-pyran-4-one, showed the most potent activity in
the tyrosinase assay (IC50 = 0.087
omethyl)-5-hydroxy-4H-pyran-4-one, showed the most potent
activity in the NO assay (IC50 = 25.75 M). Analysis of the structure–
lM). Compound 4e, 2-(hexylthi-
l
activity relationship revealed that sulfide linkage and appropriate
hydrophobic moieties such as n-pentyl, n-heptyl, and cyclohexyl are
important for higher inhibitory activity in both tyrosinase and NO
production assays.
References and notes
10. Measurements of mushroom tyrosinase activity: mushroom tyrosinase,
1. (a) Gerwick, W. H. J. Nat. Prod. 1989, 52, 252; (b) Yamamura, S.; Nishiyama, S.
Bull. Chem. Soc. Jpn. 1997, 70, 2025; (c) Rossi, M. H.; Yoshida, M.; Maia, G. S.
Phytochemistry 1997, 45, 1263; (d) Bransova, J.; Brtko, J.; Uher, M.; Novotny, L.
Int. J. Biochem. Cell Biol. 1995, 27, 701.
2. Yuen, V. G.; Caravan, P.; Gelmini, L.; Glover, N.; Mcneill, J. H.; Setyawati, I. A.;
Zhou, Y.; Orvig, C. J. Inorg. Biochem. 1997, 73, 109.
L
-tyrosine were purchased from Sigma Chemical. The reaction mixture for
mushroom tyrosinase activity consisted of 150 l of 0.1 M phosphate buffer
(pH 6.5), 3 l of sample solution, 8 l of mushroom tyrosinase (2100 unit/ml,
0.05 M phosphate buffer at pH 6.5), and 36 l of 1.5 mM -tyrosine. Tyrosinase
activity was determined by reading the optical density at 490 nm on
l
l
l
l
L
a
microplate reader (Bio-Rad 3550, Richmond, CA, USA) after incubation for
20 min at 37 °C. The inhibitory activity of the sample was expressed as the
concentration that inhibits 50% of the enzyme activity (IC50).
3. Ohyama, Y.; Mishima, Y. Fragrance J. 1990, 6, 53.
4. Chen, J. S.; Wei, C. I.; Rolle, R. S.; Otwell, W. S.; Balaban, M. O.; Marshall, M. R. J.
Agric. Food Chem. 1991, 39, 1396.
11. Measurements of NO production: RAW264.7 cells (1 Â 106 cells/ml) were
5. Mitani, H.; Koshiishi, I.; Sumita, T.; Imanari, T. Eur. J. Pharmacol. 2001, 411, 169.
6. (a) Kobayashi, Y.; Kayahara, H.; Tasada, K.; Nakamura, T.; Tanaka, H. Biosci.
Biotechnol. Biochem. 1995, 59, 1745; (b) Kobayashi, Y.; Kayahara, H.; Tadasa, K.;
Tanaka, H. Bioorg. Med. Chem. Lett. 1996, 6, 1303; (c) Kadokawa, J.; Nishikura, T.;
Muraoka, R.; Tagaya, H.; Terada, Y.; Fukuoka, N. Synth. Commun. 2003, 33, 1081;
(d) Lee, Y. S.; Park, J. H.; Kim, M. H.; Seo, S. H.; Kim, H. J. Arch. Pharm. Chem. Life
Sci. 2006, 339, 111; (e) Rho, H. S.; Baek, H. S.; You, J. W.; Kim, S.; Lee, J. Y.; Kim,
D. H.; Chang, I. S. Bull. Korean Chem. Soc. 2007, 28, 471.
preincubated with kojic acid derivatives for 30 min and continuously activated
with LPS (1
l
g/ml) for 24 h. Nitrite in culture supernatants was measured by
l of Griess reagent (1% sulfanilamide and 0.1% N-[1-naphthyl]-
l samples of
the medium for 10 min at room temperature. OD at 570 nm (OD570) was
measured using Spectramax 250 microplate reader (Molecular Devices,
adding 100
l
ethylenediamine dihydrochloride in 5% phosphoric acid) to 100
l
a
Sunnyvale, CA, USA). A standard curve of NO was made with sodium nitrite.
12. MTT assay: After the preincubation of RAW264.7 cells (1 Â 106 cells/ml) for
7. Rho, H. S.; Baek, H. S.; Ahn, S. M.; Kim, D. H.; Chang, I. S. Bull. Korean Chem. Soc.
2008, 29, 1569.
18 h, kojyl thioether derivatives (0–100 lM) were added to the cells and
incubated for 24 h. The cytotoxic effect of kojyl thioether derivatives was then
evaluated by a conventional MTT assay. At 3 h prior to culture termination,
10 ll of the MTT solution (5 mg/ml in a phosphate buffered-saline, pH 7.4)
were added and the cells were continuously cultured until termination. The
incubation was halted by the addition of 15% sodium dodecyl sulfate into each
8. Yoo, D. S.; Lee, J.; Choi, S. S.; Rho, H. S.; Cho, D. H.; Shin, W. C.; Cho, J. Y.
Pharmazie 2010, 65, 261.
9. The data of selected compounds: compound 4e: 1H NMR (300 MHz, DMSO-d6):
d 9.13 (s, 1H), 8.05 (s, 1H), 6.37 (s, 1H), 3.63 (s, 2H), 2.53 (m, 2H), 1.51 (m, 2H),
1.24 (m, 6H), 0.87 (t, 3H, J = 6.3 Hz). 13C NMR (125 MHz, DMSO-d6): d 173.6,
164.8, 145.6, 139.6, 112.0, 32.3, 31.2, 30.7, 28.6, 27.7, 21.9, 13.8. FABMS: (m/e)
243 [M+H]+. Compound 4h: 1H NMR (300 MHz, DMSO-d6): d 9.12 (s, 1H), 8.04
(s, 1H), 6.39 (s, 1H), 3.67 (s, 2H), 2.69 (m, 1H), 1.90 (m, 2H), 1.65 (m, 2H), 1.51–
well, solubilizing formazan. The absorbance at 570 nm (OD570–630
measured by a Spectramax 250 microplate reader.
) was