Organometallics 2010, 29, 6329–6333 6329
DOI: 10.1021/om100737v
N-Heterocyclic Carbene Stabilized Dichlorosilaimine IPr Cl2SidNR
3
Rajendra S. Ghadwal,† Herbert W. Roesky,*,† Carola Schulzke,‡ and Markus Granitzka†
†
€
Institut fu€r Anorganische Chemie der Universitat Gottingen, Tammannstrasse 4, D 37077 Gottingen,
€
€
Germany, and ‡School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
Received July 27, 2010
N-Heterocyclic carbene stabilized dichlorosilaimine IPr Cl2SidN(Diip) (2) has been synthesized
3
by the reaction of dichlorosilylene IPr SiCl2 (1) with bis(2,6-diisopropylphenyl)carbodiimide (IPr =
:C[N(2,6-i-Pr2-C6H3)CH]2, Diip = 2,6-i-Pr2-C6H3). Reaction of 1 with terphenyl azides also affords
dichlorosilaimines IPr Cl2SidN(2,6-Diip2-C6H3) (3) and IPr Cl2SidN(2,6-Triip2-C6H3) (4) (Triip =
3
3
3
2,4,6-i-Pr3-C6H2). Compounds 2-4 are stable under an inert atmosphere and were characterized by
elemental analysis and NMR spectroscopic studies. The molecular structures of 2-4 were deter-
mined by single-crystal X-ray analysis.
Introduction
reacts with another molecule of organic azide to form azido-
silane or silaterazoline.3,4
Silylenes are key intermediates in numerous thermal and
photochemical reactions1 of organosilicon compounds.
Silylene chemistry has been in focus over the last two decades.2
After the isolation of room-temperature-stable silylenes their
reactivity toward a wide range of unsaturated organic and
organometallic substrates has been examined,3,4 which is
diverse and dependent on the substituents on the silicon atom
and the nature of the substrates. Reactions of N-heterocyclic
silylenes (NHSis) with organic azides are reported that show
significant difference in their reactivity. Although a THF
adduct of a silaimine was reported by West3 et al. by the
reaction of a NHSi with a bulky azide, most of the reactions of
NHSis with organic azides resulted in the formation of either
azidosilane3,4 or silatetrazolines.3,4 On the basis of this, the
involvement of initial formation of an unstable silaimine as an
intermediate in these reactions was proposed, which further
The search for the formation of multiply bonded silicon
compounds5 has been attracting attention throughout the
last decades and is still one of the most interesting topics for
silicon chemists. Dialkylsilaimines are compounds with a
silicon-nitrogen double bond, which were first isolated
independently by Wiberg6 and Klingebiel7 in 1986 by ther-
mal salt elimination through multistep reactions.
Moreover, direct methods for silaimine synthesis are still
scarce, and there is no reported example of a dihalosilaimine
because of the unavailability of suitable starting materials.
Gaseous dihalosilylenes, SiX2 (X = F or Cl), have been
known for many years;8 however at room temperature they
condense to polymeric (SiX2)n or disproportionate to Si and
SiX4. There are a number of theoretical investigations9
reporting the reactivity of silylenes. However, the only available
experimental evidence10 involves SiCl2, which was generated
*To whom correspondence should be addressed. E-mail: hroesky@
gwdg.de.
(5) (a) Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419–509. (b) West, R.
Polyhedron 2002, 21, 467–472.
(6) (a) Wiberg, N.; Schurz, K.; Fischer, G. Angew. Chem., Int. Ed.
(1) (a) Gaspar, P. P.; West, R. In The Chemistry of Organic Silicon
Compounds; Rappoport, Z.; Apeloig, Y., Eds.; John Wiley & Sons: Chiche-
ster, U.K., 1998; Vol. 2, pp 2463-2568. (b) Tokitoh, N.; Ando, W. In
Reactive Intermediate Chemistry; Moss, R. A.; Platz, M. S.; Jones, M., Jr.,
Eds.; John Wiley & Sons: New York, 2004; pp 651-715. (c) du Mont, W.-W.;
1985, 24, 1053–1054. Angew. Chem. 1985, 97, 1058-1059. (b) Wiberg,
€
N.; Schurz, K.; Reber, G.; Muller, G. Chem. Communn. 1986, 591–592.
(7) Hesse, M.; Klingebiel, U. Angew. Chem., Int. Ed. 1986, 25, 649–
650. Angew. Chem. 1986, 98, 638-639.
(8) (a) Schmeisser, M.; Voss, P. Z. Anorg. Allg. Chem. 1964, 334, 50–
56. (b) Schenk, V. P. W.; Bloching, H. Z. Anorg. Allg. Chem. 1964, 334, 57–
65. (c) Timms, P. L. Inorg. Chem. 1968, 7, 387–389. (d) Schwarz, V. R.;
Meckbach, H. Z. Anorg. Allg. Chem. 1937, 232, 241–248. (e) Schwarz,
€ €
Gust, T.; Seppala, E.; Wismach, C. J. Organomet. Chem. 2004, 689, 1331–
1336.
(2) (a) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.;
Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc.
1994, 116, 2691–2692. (b) Gehrhus, B.; Lappert, M. F.; Heinicke, J.; Boese,
R.; Blaser, D. J. J. Chem. Soc., Chem. Commun. 1995, 1931–1932. (c) Kira,
M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722–
9723. (d) Haaf, M.; Schmedake, T. A.; Paradise, B. J.; West, R. Can. J. Chem.
2000, 78, 1526–1533. (e) Driess, M.; Yao, S.; Brym, M.; van W€ullen, C.;
Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628–9629. (f) So, C.-W.; Roesky,
H. W.; Magull, J.; Oswald, R. B. Angew. Chem., Int. Ed. 2006, 45, 3948–
3950. Angew. Chem. 2006, 118, 4052-4054.
(3) Denk, M.; Hayashi, R. K.; West, R. J. Am. Chem. Soc. 1994, 116,
10813–10814.
(4) (a) West, R.; Denk, M. Pure Appl. Chem. 1996, 68, 785–788. (b)
Hill, N. J.; Moser, D. F.; Guzei, I. A.; West, R. Organometallics 2005, 24,
3346–3349. (c) Tomasik, A. C.; Mitra, A.; West, R. Organometallics 2009,
28, 378–381. (d) Xiong, Y.; Yao, S.; Driess, M. Chem.;Eur. J. 2009, 15,
8542–8547.
€
V. R.; Koster, A. Z. Anorg. Allg. Chem. 1952, 270, 2–15. (f) Hengge, V. E.;
Kovar, D. Z. Anorg. Allg. Chem. 1979, 458, 163–167. (g) Koe, J. R.; Powell,
D. R.; Buffy, J. J.; Hayase, S.; West, R. Angew. Chem., Int. Ed. 1998, 37,
1441–1442. Angew. Chem. 1998, 110, 1514-1515.
(9) (a) Schlegel, H. B.; Skancke, P. N. J. Am. Chem. Soc. 1993, 115,
10916–10924. (b) Morgon, N. H.; Argenton, A. B.; da Silva, M. L. P.;
Riveros, J. M. J. Am. Chem. Soc. 1997, 119, 1708–1716. (c) Becerra, R.;
Cannady, J. P.; Walsh, R. J. Phys. Chem. A 1999, 103, 4457–4464. (d) Ikeda,
H.; Inagaki, S. J. Phys. Chem. A 2001, 105, 10711–10718. (e) Tian, C.; Yu,
H.; Lu, X. J. Mol. Struct. (THEOCHEM) 2008, 861, 39–45. (f) Lu, X. H.;
Yu, H. B.; Che, X.; Xiang, P. P. Int. J. Quantum Chem. 2008, 108, 1114–
1122.
(10) (a) Benkeser, R. A. Acc. Chem. Res. 1971, 4, 94–100. (b) Kang,
S. H.; Han, J. S.; Lee, M. E.; Yoo, B. R.; Jung, I. N. Organometallics 2003,
22, 2551–2553.
r
2010 American Chemical Society
Published on Web 11/15/2010
pubs.acs.org/Organometallics