S. Laufer et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6671–6675
6675
As shown in Table 4, the trisubstituted imidazoles were potent
inhibitors with IC50 values as low as the single-digit nanomolar
range. Compounds bearing a substituted 2-phenoxyacetamide
moiety (68–70) or a 3-phenylpropionamide moiety (74) at the
pyridine-C2 position show less inhibitory activity in comparison
to compounds having the rigid cinnamide moieties (62–65). Of
particular interest were compounds 64 and 66 bearing an (E)-3-(2,
6-dichlorophenyl)acrylamide and a 2-(4-fluorophenyl)acetamide
moiety at the pyridine-C2 position, respectively. Both compounds
Table 4 (continued)
a
Compd
R1
p38a IC50 (lM)
Cl
Cl
Cl
69
70
71
0.16 0.01
0.16 0.03
O
O
O
O
O
O
Cl
inhibited the p38a MAP kinase with IC50 values in the single-digit
O
nanomolar range.
0.053 0.017
0.027 0.004
0.090 0.014
In Figure 4 an overlay of the proposed binding modes of
compounds 44, 48 and 66 is depicted. All these compounds bear
a 2-(4-fluorophenyl)acetamide moiety at the pyridine-C2 position
but differ in the substitution pattern of the imidazole-N1 position.
The substituent at the imidazole-N1 position causes a rotation of
the pyridine moiety compared to the imidazole-N1 unsubstituted
compound. This may result in a weaker enzyme–inhibitor interac-
tion of the pyridine-C2 moiety and therefore in a decrease of inhib-
itory activity of the tetrasubstituted imidazoles.
72
73
O
O
CH3
CH3
CH3
H3C
CH3
CH3
In summary, we have reported p38a MAP kinase inhibition data
74
75
0.13 0.04
0.013 0.005
0.10 0.01
for different series of 1,2,4,5-tetrasubstituted and 2,4,5-trisubsti-
tuted imidazoles. The SARs between these two compound classes
are different and not readily comparable. The trisubstituted imid-
azole series was found to be more potent than the tetrasubstituted
imidazole series. Potent inhibitors with IC50 values down to 3 nM
were identified.
O
O
O
76
Acknowledgments
O
a
Mean SEM of three experiments.
We thank M. Goettert, Dr. S. Luik, Dr. S. Linsenmeier and K. Bauer
for providing the p38
a MAP kinase inhibition data. S. Bühler,
M. Gehringer, J. Schlosser, and R. Seelig are gratefully acknowledged
for helpful discussions.
References and notes
1. Chen, Z.; Gibson, T. B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.; Wright, A.;
Vanderbilt, C.; Cobb, M. H. Chem. Rev. 2001, 101, 2449.
2. Badger, A. M.; Bradbeer, J. N.; Votta, B.; Lee, J. C.; Adams, J. L.; Griswold, D. E. J.
Pharmacol. Exp. Ther. 1996, 279, 1453.
3. Smith, R. J. Drug Discovery Today 2005, 10, 1598.
4. Sticherling, M. Drug Discovery Today: Dis. Mech. 2005, 2, 275.
5. Kumar, S.; Boehm, J.; Lee, J. C. Nat. Rev. Drug Disc. 2003, 2, 717.
6. Laufer, S. A.; Hauser, D. R. J.; Domeyer, D. M.; Kinkel, K.; Liedtke, A. J. J. Med.
Chem. 2008, 51, 4122.
7. Ziegler, K.; Hauser, D. R. J.; Unger, A.; Albrecht, W.; Laufer, S. A. ChemMedChem
2009, 4, 1939.
8. Peifer, C.; Wagner, G.; Laufer, S. Curr. Top. Med. Chem. (Sharjah, United Arab
Emirates) 2006, 6, 113.
9. Laufer, S. A.; Wagner, G. K.; Kotschenreuther, D. A.; Albrecht, W. J. Med. Chem.
2003, 46, 3230.
10. Giumanini, A. G.; Verardo, G.; Zangrando, E.; Lassiani, L. J. Prakt. Chem. 1987,
329, 1087.
11. Tiollais, R. Bull. Soc. Chim. Fr. 1947, 708, 716.
12. Laufer, S.; Thuma, S.; Peifer, C.; Greim, C.; Herweh, Y.; Albrecht, A.; Dehner, F.
Anal. Biochem. 2005, 344, 135.
Figure 4. Overlay of the proposed binding modes of inhibitors 44 (yellow), 48
(cyan) and 66 (gold) in the ATP binding site of p38
a MAP kinase. As the protein
model, the X-ray structure 1YWR.pdb was used.
13. Schroedinger Suite 2008, Induced Fit Docking Protocol; Glide version 5.0,
Schroedinger, LLC, New York, 2005.
14. Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. J. Med.
Chem. 2009, 52, 2854.
15. Magid, R. M.; Fruchey, O. S.; Johnson, W. L.; Allen, T. G. J. Org. Chem. 1979, 44,
359.
16. Appel, R. Angew. Chem. 1975, 87, 863.
sulfur atom of imidazol-2-thione 599 furnished the 2-methylsulfa-
nylimidazole derivative 60. The amino function at the pyridine-C2
position was introduced by nucleophilic replacement with ammo-
nium hydroxide. The final compounds 62–76 were obtained by
coupling with the corresponding carboxylic acids after its activa-
tion with CDI.
17. Middleton, W. J. J. Org. Chem. 1975, 40, 574.
18. Finkelstein, H. Ber. Dtsch. Chem. Ges. 1910, 43, 1528.