10.1002/chem.201604598
Chemistry - A European Journal
COMMUNICATION
300 K is about 20.0 cm3 mol−1 K (Figure 3B), which is much
smaller than the spin only values of 30 isolated NiII ions with S =
1 (30.0 cm3 mol−1 K). As we know, the degeneracy of Landau
levels of the central NiII ions will be lifted within square planar
crystal field, which results in the central NiII ions with effective S
= 0. As a result, the number of NiII ions contributing magnetic
moment is 24, instead of 30 as intuitively thought. The curve
between 50 and 300 K is well described by Curie-Weiss law with
Curie constant C = 19.7 cm3 mol−1 K, which is obtained by linear
fit of temperature dependent M−1. The value of the Weiss
temperature near zero and the curvature of MT clearly indicate
the paramagnetism of 2. When temperature decreases, MT
approaches 13.5 cm3 mol−1 K, which may be attributed to the
zero field splitting.
[6]
[7]
[8]
S. Horiuchi, T. Murase, M. Fujita, J. Am. Chem. Soc. 2011, 133, 12445-
12447.
N. Rodríguez-Vázquez, M. Amorín, I. Alfonso, J. R. Granja, Angew.
Chem. Int. Ed. 2016, 55, 4504-4508.
C. Gütz, R. Hovorka, C. Klein, Q. Q. Jiang, C. Bannwarth, M. Engeser,
C. Schmuck, W. Assenmacher, W. Mader, F. Topić, K. Rissanen, S.
Grimme, A. Lützen, Angew. Chem. Int. Ed. 2014, 53, 1693-1698.
R. M. Zhu, J. Lübben, B. Dittrich, G. H. Clever, Angew. Chem. Int. Ed.
2015, 54, 2796-2800.
[9]
[10] M. Kieffer, B. S. Pilgrim, T. K. Ronson, D. A. Roberts, M. Aleksanyan, J.
R. Nitschke, J. Am. Chem. Soc. 2016, 138, 6813-6821.
[11] J. Park, L. B. Sun, Y. P. Chen, Z. Perry, H. C. Zhou, Angew. Chem. Int.
Ed. 2014, 53, 5842-5846.
[12] P. D. Frischmann, V. Kunz, F. Würthner, Angew. Chem. Int. Ed. 2015,
54, 7285-7289.
[13] X. P. Zhou, J. Liu, S. Z. Zhan, J. R. Yang, D. Li, K. M. Ng, R. W. Y. Sun,
C. M. Che, J. Am. Chem. Soc. 2012, 134, 8042-8045.
[14] Y. R. Zheng, W. J. Lan, M. Wang, T. R. Cook, P. J. Stang, J. Am.
Chem. Soc. 2011, 133, 17045-17055.
[15] D. Fujita, H. Yokoyama, Y. Ueda, S. Sato, M. Fujita, Angew. Chem. Int.
Ed. 2015, 54, 155-158.
[16] N. Kishi, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 2014, 53,
3604-3607.
[17] D. M. Wood, W. J. Meng, T. K. Ronson, A. R. Stefankiewicz, J. K. M.
Sanders, J. R. Nitschke, Angew. Chem. Int. Ed. 2015, 54, 3988-3992.
[18] W. J. Ramsay, F. T. Szczypiński, H. Weissman, T. K. Ronson, M. M. J.
Smulders, B. Rybtchinski, J. R. Nitschke, Angew. Chem. Int. Ed. 2015,
54, 5636-5640.
−1
Figure 3. Plots of temperature dependence of χMT and χM for complexes 1
(A) and 2 (B).
[19] D. Tian, Q. Chen, Y. Li, Y. H. Zhang, Z. Chang, X. H. Bu, Angew. Chem.
Int. Ed. 2014, 53, 837-841.
In conclusion, we reported two nickel complexes of distinct
nuclearities with the use of tripodal tris-tacn ligand L. The Ni3
complex 1 resembles the trimetallic complexes we reported
recently, in which a biologically relevant [M3(PO4)] core is kept
within the backbone of L. The Ni30 complex 2 can be viewed as
a nano-sized cage of truncated octahedron with six [Ni5(CN)4]6+
squares occupying the vertexes and eight L ligands linking them
as the faces of the octahedron. Various conformations of L and
the templating effect of phosphate are the origins to form these
different products under similar synthetic conditions. Although
complex 2 is obtained unexpectedly, it is noteworthy in several
aspects, including (1) cyanide ions are generated in situ under
mild reaction conditions, and the direct use of [Ni(CN)4]2− for the
assembly of 2 is unsuccessful; (2) complex 2 represents the first
example to have pentanuclear M5 building blocks as vertexes
and lagre and flexible ligands as linkages of polyhedrons; (3)
symmetry-directed assembly of C4-symmetry [Ni5(CN)4]6+
squares and C3-symmetry L ligands is a possible reason for the
formation of 2. Magnetic studies revealed the ferromagnetism of
1 and the paramagnetism of 2.
[20] M. J. Prakash, M. Oh, X. F. Liu, K. N. Han, G. H. Seong, M. S. Lah,
Chem. Commun. 2010, 46, 2049-2051.
[21] X. S. Wang, M. Chrzanowski, W. Y. Gao, L. Wojtas, Y. S. Chen, M. J.
Zaworotko, S. Q. Ma, Chem. Sci. 2012, 3, 2823-2827.
[22] K. C. Xiong, F. L. Jiang, Y. L. Gai, D. Q. Yuan, D. Han, J. Ma, S. Q.
Zhang, M. C. Hong, Chem. Eur. J. 2012, 18, 5536-5540.
[23] K. C. Xiong, F. L. Jiang, Y. L. Gai, D. Q. Yuan, L. Chen, M. Y. Wu, K. Z.
Su, M. C. Hong, Chem. Sci. 2012, 3, 2321-2325.
[24] M. Liu, W. P. Liao, C. H. Hu, S. C. Du, H. J. Zhang, Angew. Chem. Int.
Ed. 2012, 51, 1585-1588.
[25] X. X. Hang, B. Liu, X. F. Zhu, S. T. Wang, H. T. Han, W. P. Liao, Y. L.
Liu, C. H. Hu, J. Am. Chem. Soc. 2016, 138, 2969-2972.
[26] R. Cao, P. Müller, S. J. Lippard, J. Am. Chem. Soc. 2010, 132, 17366-
17369.
[27] R. Cao, B. D. McCarthy, S. J. Lippard, Inorg. Chem. 2011, 50, 9499-
9507.
[28] X. Liu, P. W. Du, R. Cao, Nat. Commun. 2013, 4, 2375.
[29] Y. Y. Ning, M. Gao, K. Y. Zheng, Z. Y. Zhang, J. Zhou, X. Hao, R. Cao,
J. Mol. Catal. A: Chem. 2015, 403, 43-51.
II
3
[30] Crystal data for 1: [(Ni Cl)3(CH3OH)3(HPO4)L](PF6), trigonal, R c, a =
15.5930(9) Å, c = 78.327(9) Å, V = 16493(2) Å3, Z = 12, T = 153(2) K,
38917 reflections collected, 3788 unique (Rint = 0.0332), final R1
=
0.0606, wR2 = 0.1703 for 3207 observed reflections [I > 2σ(I)]. Crystal
data for 2, [(NiII5(CN)4(H2O)8Cl)6L8]Cl30, tetragonal, I4, a = 32.4457(15)
Å, c = 29.6336(13) Å, V = 31196(2) Å3, Z = 2, T = 150(2) K, 299083
reflections collected, 32064 unique (Rint = 0.0810), final R1 = 0.1069,
wR2 = 0.2756 for 22399 observed reflections [I > 2σ(I)]. CCDC 1492717
(1) and 1492718 (2) contain the supplementary X-ray data for this
paper. These data can be obtained free of charge from the Cambridge
[31] M. C. Hong, Y. J. Zhao, W. P. Su, R. Cao, M. Fujita, Z. Y. Zhou, A. S. C.
Chan, J. Am. Chem. Soc. 2000, 122, 4819-4820.
Keywords: self-assembly • tripodal ligand • nickel • coordination
cage • flexible
[1]
[2]
A. J. McConnell, C. S. Wood, P. P. Neelakandan, J. R. Nitschke, Chem.
Rev. 2015, 115, 7729-7793.
L. Chen, Q. H. Chen, M. Y. Wu, F. L. Jiang, M. C. Hong, Acc. Chem.
Res. 2015, 48, 201-210.
[3]
[4]
[5]
A. Galan, P. Ballester, Chem. Soc. Rev. 2016, 45, 1720-1737.
M. D. Ward, Chem. Commun. 2009, 4487-4499.
Y. Fang, T. Murase, S. Sato, M. Fujita, J. Am. Chem. Soc. 2013, 135,
613-615.
[32] N. Li, F. L. Jiang, L. Chen, X. J. Li, Q. H. Chen, M. C. Hong, Chem.
Commun. 2011, 47, 2327-2329.
[33] N. M. Brunkan, D. M. Brestensky, W. D. Jones, J. Am. Chem. Soc.
2004, 126, 3627-3641.
This article is protected by copyright. All rights reserved.