Scheme 1
.
Retrosynthetic Analysis
Scheme 2. Synthesis of Iodoenyne 6a
alkaloids.4 Thus, it would be of potentially broad interest to
develop synthetic routes that are amenable for both the
erythrinane and homoerythrinane series. Herein, we report a
concise total synthesis of 3-demethoxyerythratidinone (3),5,6 in
which a combined rhodium(I) catalysis enables tandem
annulation of the A and B rings of the erythrinane skeleton
and thus greatly simplifies the synthesis.7
Our synthetic plan arose from the notion that diene 4
possessing the essential framework of the target 3 might be
readily accessed from enyne 6 via a catalytic domino process
involving a transition metal unsaturated carbene (vinylidene,
e.g. 5) complex as an intermediate (Scheme 1). Based on
(3) For selected recent examples, see: (a) Tietze, L. F.; To¨lle, N.;
Kratzert, D.; Stalke, D. Org. Lett. 2009, 11, 5230. (b) Fukumoto, H.;
Takahashi, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem., Int. Ed. 2006,
45, 2731. (c) El Bialy, S. A. A.; Braun, H.; Tietze, L. F. Angew. Chem.,
Int. Ed. 2004, 43, 5391.
our recent studies on combined rhodium catalysis,8 it was
envisioned that 6 could be mobilized to undergo C-C bond
formations at both the R- and ꢀ-positions of its alkyne
moiety, thus establishing the A/B ring system in one step.
In this scenario, a single catalyst would have to mediate the
two distinct bond-forming events, the ꢀ-alkylation and enyne
cycloisomerization. The requisite haloenyne 6 for the double
ring closure was then anticipated to be easily assembled from
the three commercially available building blocks, 7, 8, and
9, in a straightforward manner without extensive engineering.
With the plan to evaluate the tandem A/B approach, our
studies commenced with the construction of the C and D
rings (Scheme 2). Thus, homoveratrylamine (7) was first
acylated with pentenoyl chloride (8), and the resulting amide
was subjected to Bischler-Napieralski conditions to afford
isoquinoline 10 in quantitative yield.9 For the introduction
of the requisite halide and alkyne groups, a sequence
involving N-alkylation and iminium addition was carried out.
Thus, treatment of isoquinoline 10 with the silyl protected
iodoethanol 9a followed by addition of an ethynyl Grignard
reagent to N-alkyliminium ion 11a provided the desired
propargyl amine 12a in high yield.10 After removal of the
(4) (a) Westling, M.; Smith, R.; Livinghouse, T. J. Org. Chem. 1986,
51, 1159. (b) Padwa, A.; Hennig, R.; Kappe, C. C.; Reger, T. S. J. Org.
Chem. 1998, 63, 1144.
(5) Isolation: Barton, D. H. R.; Gunatilaka, A. A. L.; Letcher, R. M.;
Lobo, A. M. F. T.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1973,
874
.
(6) For reports on the total synthesis of 3-demethoxyerythratidinone,
see: (a) Zhang, F.; Simpkins, N. S.; Blake, A. J. Org. Biomol. Chem. 2009,
7, 1963. (b) Zhang, F.; Simpkins, N. S.; Wilson, C. Tetrahedron Lett. 2007,
48, 5942. (c) Padwa, A.; Wang, Q. J. Org. Chem. 2006, 71, 7391. (d)
Cassayre, J.; Quiclet-Sire, B.; Saunier, J.-B.; Zard, S. Z. Tetrahedron Lett.
1998, 39, 8995. (e) Hosoi, S.; Ishida, K.; Sangai, M.; Tsuda, Y. Chem.
Pharm. Bull. 1992, 40, 3115. (f) Tsuda, Y.; Sakai, Y.; Nakai, A.; Kaneko,
M.; Ishiguro, Y.; Isobe, K.; Taga, J.; Sano, T. Chem. Pharm. Bull. 1990,
38, 1462. (g) Ishibashi, H.; Sato, T.; Takahashi, M.; Hayashi, M.; Ishikawa,
K.; Ikeda, M. Chem. Pharm. Bull. 1990, 38, 907. (h) Wasserman, H. H.;
Amici, R. M. J. Org. Chem. 1989, 54, 5843. (i) Irie, H.; Shibata, K.;
Matsuno, K.; Zhang, Y. Heterocycles 1989, 29, 1033. (j) Danishefsky, S. J.;
Panek, J. S. J. Am. Chem. Soc. 1987, 109, 917. (k) Tanaka, H.; Shibata,
M.; Ito, K. Chem. Pharm. Bull. 1984, 32, 1578. (l) Tsuda, Y.; Nakai, A.;
Ito, K.; Suzuki, F.; Haruna, M. Heterocycles 1984, 22, 1817. For reports
on the formal synthesis, see: (m) Liang, J.; Chen, J.; Liu, J.; Li, L.; Zhang,
H. Chem. Commun. 2010, 46, 3666. (n) Gao, S.; Tu, Y. Q.; Hu, X.; Wang,
S.; Hua, R.; Jiang, Y.; Zhao, Y.; Fan, X.; Zhang, S. Org. Lett. 2006, 8,
2373. (o) Wang, Q.; Padwa, A. Org. Lett. 2006, 8, 601. (p) Allin, S. M.;
Streetley, G. B.; Slater, M.; James, S. L.; Martin, W. P. Tetrahedron Lett.
2004, 45, 5493. (q) Chikaoka, S.; Toyao, A.; Ogasawara, M.; Tamura, O.;
Ishibashi, H. J. Org. Chem. 2003, 68, 312. (r) Sano, T.; Toda, J.; Ohshima,
T.; Tsuda, Y. Chem. Pharm. Bull. 1992, 40, 873
.
(7) Portions of this work are taken from preliminary studies: (a) Joo,
J. M. Ph.D. Dissertation, Princeton University, NJ, October 2008. (b) David,
R. A. A.B. Dissertation, Princeton University, NJ, June 2008.
(8) Joo, J. M.; Yuan, Y.; Lee, C. J. Am. Chem. Soc. 2006, 128, 14818.
(9) For a similar sequence to prepare a dihydroisoquinoline, see: Ho,
W.-B.; Broka, C. J. Org. Chem. 2000, 65, 6743.
Org. Lett., Vol. 12, No. 24, 2010
5705