S.J. Sabounchei et al. / Inorganica Chimica Acta 363 (2010) 3654–3661
3661
ðI ꢀ AÞ
[2] U. Belluco, R.A. Michelin, M. Mozzon, R. Bertani, G. Facchin, L. Zanotto,
L. Pandolfo, J. Organomet. Chem. 557 (1998) 37.
[3] L.R. Falvello, S. Fernandez, R. Navarro, A. Rueda, E.P. Urriolabeitia, Inorg. Chem.
37 (1998) 6007.
[4] R. Navarro, E.P. Urriolabeitia, J. Chem. Soc., Dalton Trans. (1999) 4111.
[5] H. Schmidbaur, Angew. Chem. 22 (1983) 907.
[6] L.R. Falvello, S. Fernandez, R. Navarro, A. Rueda, E.P. Urriolabeitia,
Organometallics 17 (1998) 5887.
[7] Y. Oosawa, H. Urabe, T. Saito, Y. Sasaki, J. Organomet. Chem. 122 (1976) 113.
[8] A. Spannenberg, W. Baumann, U. Rosenthal, Organometallics 19 (2000) 3991.
[9] D. Saravanabharathi, T.S. Venkatakrishnan, M. Nethaji, S.S. Krishnamurthy,
Proc. Ind. Acad. Sci. (Chem. Sci.) 115 (2003) 741.
g
¼
ð1Þ
2
where I and A are the ionization potential and the electron affin-
ity of the system, respectively. Obviously the energy gap between
the HOMO and LUMO is equal to (I ꢀ A). Thus, we can easily calcu-
late the hardness of the present molecules using Eq. (2) [41].
ðELUMO ꢀ EHOMO
Þ
g
¼
ð2Þ
2
[10] I.J.B. Lin, H.C. Shy, C.W. Liu, L.-K. Liu, S.-K. Yeh, J. Chem. Soc., Dalton Trans.
(1990) 2509.
[11] L.R. Falvello, S. Fernandez, R. Navarro, E.P. Urriolabeitia, Inorg. Chem. 39 (2000)
2957.
[12] H. Takahashi, Y. Oosawa, A. Kobayashi, T. Saito, Y. Sasaki, Chem. Lett. (1976)
15.
[13] H. Takahashi, Y. Oosawa, A. Kobayashi, T. Saito, Y. Sasaki, Bull. Chem. Soc. Jpn.
50 (1977) 1771.
[14] R. Uson, J. Fornies, R. Navarro, A.M. Ortega, J. Organomet. Chem. 334 (1987)
389.
[15] M.M. Ebrahima, K. Panchanatheswaran, A. Neels, H. Stoeckli-Evans,
J. Organomet. Chem. 694 (2009) 643.
[16] S.M. Sbovata, A. Tassan, G. Facchin, Inorg. Chim. Acta 361 (2008) 3177.
[17] M.M. Ebrahim, H. Stoeckli-Evans, K. Panchanatheswaran, Polyhedron 26
(2007) 3491.
[18] M. Kalyanasundari, K. Panchanatheswaran, W.T. Robinson, H. Wen,
J. Organomet. Chem. 491 (1995) 103.
We note that hard molecules have a large HOMOꢀLUMO gap
and soft molecules have a small one [42]. The result of CEP-31G
calculation show that both the HOMO and LUMO are demonstrated
with negative charges (see Table 5). Furthermore, the calculated
energy gap between the latter orbitals for the complex 5 contain-
ing iodine is smaller than that for other complexes. Thus, the latter
complex is softer than the other complexes described here. This is
completely consistent with this fact that a hard group makes mol-
ecule hard and a soft groups makes it soft. The HOMO and LUMO
for all three mononuclear complexes are illustrated in Fig. 5.
4. Conclusion
[19] B. Kalyanasundari, K. Panchanatheswaran, V. Parthasarathi, W.T. Robinson,
Bull. Chem. Soc. Jpn. 72 (1999) 33.
[20] E.C. Spencer, M.B. Mariyatra, J.A.K. Howard, A.M. Kenwright, K.
Panchanatheswaran, J. Organomet. Chem. 692 (2007) 1081.
[21] P. Laavanya, U. Venkatasubramanian, K. Panchanatheswaran, J.A.K. Bauer,
Chem. Commun. (2001) 1660.
[22] S.J. Sabounchei, A. Dadrass, M. Jafarzadeh, S. Salehzadeh, H.R. Khavasi,
J. Organomet. Chem. 692 (2007) 2500.
[23] S.J. Sabounchei, H. Nemattalab, S. Salehzadeh, M. Bayat, H.R. Khavasi, H.
Adams, J. Organomet. Chem. 693 (2008) 1975.
The present study describes the synthesis and characterization
of a series of chelate mercury(II) complexes derived from mercuric
halides and a bifunctionalized phosphorus ylide. On the basis of
the physicochemical and spectroscopic data we propose that
ligands herein exhibit monodentate P, C-coordination to the metal
centre, which is further confirmed by the X-ray crystal structure of
the complexes. The Hg–C bond in these complexes is longer than
normal Hg–Cylide bond found in mononuclear and binuclear com-
plexes. The result of theoretical study showed that the experimen-
tally determined structure of the complex 5 is more stable than its
other bonding modes.
[24] S.J. Sabounchei, H. Nemattalab, S. Salehzadeh, S. Khani, M. Bayat, H. Adams,
M.D. Ward, Inorg. Chim. Acta 362 (2009) 105.
[25] G.M. Sheldrick, SHELXS-97,
Structures, University of Göttingen, Germany, 1997.
[26] G.M. Sheldrick, SHELX-97, Program for Crystal Structure Refinement,
A Program for Automatic Solution of Crystal
A
University of Göttingen, Germany, 1997.
[27] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
Acknowledgement
[28] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[29] M.J. Frisch et al., GAUSSIAN 03, Revision B.03, GAUSSIAN, Inc., Pittsburgh, PA, 2003.
[30] HYPER CHEM, Released 5.02, Hypercube, INC, Gainesville, 1997.
[31] J.A. Teagle, J.L. Burmeister, Inorg. Chim. Acta 118 (1986) 65.
[32] G. Facchin, R. Bertani, M. Calligaris, G. Nardin, M. Mari, J. Chem. Soc., Dalton
Trans. (1987) 1381.
We are grateful to the Bu-Ali Sina University for a grant,
Mr. Zebarjadian and Darvishi for recording the NMR spectra.
Appendix A. Supplementary material
[33] N.L. Holy, N.C. Baenziger, R.M. Flynn, D.C. Swenson, J. Am. Chem. Soc. 98 (1976)
7823.
[34] J. Vicente, M.T. Chicote, J. Fernandez-Baeza, J. Martin, I. Saura-Hamas, J. Iurpin,
P.G. Jones, J. Organomet. Chem. 331 (1987) 409.
[35] J. Vicente, M.T. Chicote, M.C. Lagunas, P.G. Jones, J. Chem. Soc., Dalton Trans.
(1991) 2579.
[36] H. Koezuka, G. Matsubayashi, T. Tanaka, Inorg. Chem. 25 (1976) 417.
[37] N.A. Bell, T.D. Dee, M. Goldetein, P.J. Mckeenna, I.W. Nowell, Inorg. Chim. Acta
71 (1983) 135.
CCDC 703482 and 703480 contain the supplementary crystallo-
graphic data for 4 and 5. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.
this article can be found, in the online version, at doi:10.1016/
[38] L. Fälth, Chem. Sci. 9 (1976) 71.
[39] M. Kubicki, S.K. Hadjikakou, M.N. Xanthopoulou, Polyhedron 20 (2001) 2179.
[40] M.M. Ebrahim, A. Neels, H. Stoeckli-Evans, K. Panchanatheswaran, Polyhedron
26 (2007) 1277.
References
[41] R.G. Pearson, Inorg. Chem. 27 (1988) 734.
[42] P.K. Chattaraj, A. Poddar, J. Phys. Chem. A 103 (1999) 8691.
[1] W.C. Kaska, Coord. Chem. Rev. 48 (1983) 1.