ORGANIC
LETTERS
2012
Vol. 14, No. 9
2338–2341
Nucleophile- or Light-Induced Synthesis
of 3-Substituted Phthalides from
2-Formylarylketones
€
Dario C. Gerbino, Daniel Augner, Nikolay Slavov, and Hans-Gunther Schmalz*
€
Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Koln, Germany
Received March 23, 2012
ABSTRACT
The surprisingly facile conversion (isomerization) of 2-formyl-arylketones into 3-substituted phthalides, as observed for the marine natural
product pestalone and its per-O-methylated derivative, was investigated using a series of simple 2-acylbenzaldehydes as substrates. The
transformation generally proceeds smoothly in DMSO, either in a CannizarroꢀTishchenko-type reaction under nucleophile catalysis (NaCN) or
under photochemical conditions (DMSO, 350 nm).
Phthalides, i.e. 1(3H)-isobenzofuran-1-ones, represent a
relevant class of compounds because this structural motif
is found in a large number of natural products,1 synthetic
pharmaceuticals,2 and building blocks for the synthesis of
more complex molecules.3 Of particular importance are C3-
substituted phthalides as exemplified by the natural prod-
ucts cytosporone E (1),4a fuscinarin (2),4b isopestacin (3),4c
and cryphonectric acid (4)4d (Figure 1). Not surprisingly, a
number of methods for the synthesis of 3-substituted phtha-
lides have been developed, most of them exploiting either the
cylization of an 1-hydroxyalkyl-substituted benzoic acid
derivative5 or the alkylation of a preformed phthalide in the
3-position.6 Other established methods are based on the
carbonylative or carboxylative ortho-functionalization of
benzylic alcohols.7 In recent years, several new transi-
tion-metal-catalyzed phthalide syntheses such as the Pd-
or Rh-catalyzed reaction of phthalaldehyde with arylboron
reagents,8 the Ru-catalyzed cross-dehydrogenative CꢀH
bond alkenylation of benzoic acids,9 or the Ru- or Rh-
catalyzed intramolecular hydroacylation of 2-acylyl-
benzaldehydes10 have been developed.
(1) Devon, T. K.; Scott, A. I. Handbook of Naturally Occurring
Compounds; Academic Press: New York, 1975; Vol. 1, pp 249ꢀ264.
€
(2) (a) Knepper, K.; Ziegert, R. E.; Brase, S. T. Tetrahedron 2004, 60,
8591–8603 and references therein. (b) Hung, T. V.; Mooney, B. A.;
Prager, R. H.; Tippett, J. M. Aust. J. Chem. 1981, 34, 383–395.
(3) (a) Patil, L.; Borate, H. B.; Ponde, D. E.; Deshpande, V. H.
Tetrahedron 2002, 58, 6615–6620. (b) Mal, D.; Pahari, P. Chem. Rev.
2007, 107, 1893–1918.
(4) (a) Brady, S. F.; Wagenaar, M. M.; Singh, M. P.; Janso, J. E.;
Clardy, J. Org. Lett. 2000, 2, 4043–4046. (b) Yoganathan, K.; Rossant,
C.; Ng, S.; Huang, Y.; Butler, M. S.; Buss, A. D. J. Nat. Prod. 2003, 66,
1116–1117. (c) Strobel, G.; Ford, E.; Worapong, J.; Harper, J. K.; Arif,
A. M.; Grant, D. M.; Fung, P. C. W.; Chau, R. M. W. Phytochemistry
2002, 60, 179–183. (d) Arnone, A.; Assante, G.; Nasini, G.; Strada, S.;
Vercesi, A. J. Nat. Prod. 2002, 65, 48–50.
(5) For recent examples, see: (a) Mangas-Sanchez, J.; Busto, E.;
Gotor-Fernandez, V.; Gotor, V. Org. Lett. 2012, 14, 1444–1447. (b)
Yadav, J. S.; Sreenivas, M.; Reddy, A. S.; Reddy, B. V. S. J. Org. Chem.
2010, 75, 8307–8310. (c) Kuriyama, M.; Ishiyama, N.; Shimazawa, R.;
Shirai, R.; Onomura, O. J. Org. Chem. 2009, 74, 9210–9213. (d) Zhang,
B.; Xu, M. H.; Lin, G. Q. Org. Lett. 2009, 11, 4712–4715.
(6) See, for instance: Singh, M.; Argade, N. P. J. Org. Chem. 2010, 75,
3121–3124.
(7) (a) Cowell, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4193–
4198. (b) Larock, R. C.; Fellows, C. J. Am. Chem. Soc. 1982, 104, 1900–
1907. (c) Paleo, M. R.; Lamas, C.; Castedo, L.; Dominguez, D. J. Org.
Chem. 1992, 57, 2029–2033.
(8) (a) Ye, Z.; Lv, G.; Wang, W.; Zhang, M.; Cheng, J. Angew. Chem.,
Int. Ed. 2010, 49, 3671–3674. (b) Luo, F.; Pan, S.; Pan, C.; Qian, P.;
Cheng, J. Adv. Synth. Catal. 2011, 353, 320–32.
(9) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153–4155.
(10) (a) Phan, D.; Kim, B.; Dong, V. M. J. Am. Chem. Soc. 2009, 131,
15608–15609. (b) Omura, S.; Fukuyama, T.; Murakami, Y.; Okamoto,
H.; Ryu, I. Chem. Commun. 2009, 6741–6743. See also: (c) Willis, M. C.
Angew. Chem., Int. Ed. 2010, 49, 6026–6027.
r
10.1021/ol300757m
Published on Web 04/22/2012
2012 American Chemical Society