Organic Letters
Letter
Ullmann-type coupling reactions. Angew. Chem., Int. Ed. 2009, 48,
6954−6971. (c) Armstrong, A.; Collins, J. C. Direct azole amination:
C-H functionalization as a new approach to biologically important
heterocycles. Angew. Chem., Int. Ed. 2010, 49, 2282−2285.
(4) (a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. Intermolecular Amidation
of Unactivated sp2 and sp3 C−H Bonds via Palladium-Catalyzed
Cascade C−H Activation/Nitrene Insertion. J. Am. Chem. Soc. 2006,
128, 9048−9049. (b) Pan, J.; Su, M.; Buchwald, S. L. Palladium(0)-
catalyzed intermolecular amination of unactivated C(sp3)-H bonds.
Angew. Chem., Int. Ed. 2011, 50, 8647−8651. (c) Yoo, E. J.; Ma, S.;
Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. Pd-Catalyzed Intermolecular C-H
Amination with Alkylamines. J. Am. Chem. Soc. 2011, 133, 7652−
7655.
(5) (a) Ng, K. H.; Zhou, Z.; Yu, W. Y. Rhodium(III)-catalyzed
intermolecular direct amination of aromatic C-H bonds with N-
chloroamines. Org. Lett. 2012, 14, 272−275. (b) Grohmann, C.;
Wang, H.; Glorius, F. Rh[III]-Catalyzed C-H Amidation Using
Aroyloxycarbamates To Give N-Boc Protected Arylamines. Org. Lett.
2013, 15, 3014−3017. (c) Tang, R.-J.; Luo, C.-P.; Yang, L.; Li, C.-J.
Rhodium(III)-Catalyzed C(sp2)-H Activation and Electrophilic
Amidation with N-Fluorobenzenesulfonimide. Adv. Synth. Catal.
2013, 355, 869−873. (d) Yu, D.-G.; Suri, M.; Glorius, F. RhIII/
CuII-Cocatalyzed Synthesis of 1H-Indazoles through C-H Amidation
and N-N Bond Formation. J. Am. Chem. Soc. 2013, 135, 8802−8805.
(6) Thirunavukkarasu, V. S.; Kozhushkov, S. I.; Ackermann, L. C-H
nitrogenation and oxygenation by ruthenium catalysis. Chem.
Commun. 2014, 50, 29−39.
provides a straightforward approach for aryl-azole under mild
and easy conditions, avoiding the insertion of strong directing
groups, and no metals or oxidants were needed. Control
experiments suggested that the arene radical cation inter-
mediate was the key to successful conversion. Further
exploration of acid-assisted regioselective conversions of
arene is undergoing in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Materials and methods, condition optimization and
general experimental procedures, scale-up reaction,
control experiments, cyclic voltammetry experiments,
characterization data for all products, references, and 1H
and 13C spectra of products (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(7) (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. Cu(II)-
Catalyzed Functionalizations of Aryl C-H Bonds Using O2 as an
Oxidant. J. Am. Chem. Soc. 2006, 128, 6790. (b) Uemura, T.; Imoto,
S.; Chatani, N. Amination of the Ortho C−H Bonds by the
Cu(OAc)2-mediated Reaction of 2-Phenylpyridines with Anilines.
Chem. Lett. 2006, 35, 842. (c) Tran, L. D.; Roane, J.; Daugulis, O.
Directed Amination of Non-Acidic Arene C-H Bonds by a Copper−
Silver Catalytic System. Angew. Chem., Int. Ed. 2013, 52, 6043.
(d) Wang, L.; Priebbenow, D. L.; Dong, W.; Bolm, C. N-Arylations of
Sulfoximines with 2-Arylpyridines by Copper-Mediated Dual N−H/
C−H Activation. Org. Lett. 2014, 16, 2661.
(8) (a) Sauermann, N.; Mei, R.; Ackermann, L. Electrochemical C-H
Amination by Cobalt Catalysis in a Renewable Solvent. Angew. Chem.,
Int. Ed. 2018, 57, 5090−5094. (b) Sauermann, N.; Meyer, T. H.;
Ackermann, L. Electrochemical Cobalt-Catalyzed C-H Activation.
Chem. - Eur. J. 2018, 24, 16209−16217. (c) Tian, C.; Massignan, L.;
Meyer, T. H.; Ackermann, L. Electrochemical C-H/N-H Activation
by Water-Tolerant Cobalt Catalysis at Room Temperature. Angew.
Chem., Int. Ed. 2018, 57, 2383−2387.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Ministry of Science and
Technology of China (2017YFA0206903), the National
Natural Science Foundation of China (21861132004 and
21603248), the Strategic Priority Research Program of the
Chinese Academy of Sciences (XDB17000000), the Key
Research Program of Frontier Sciences of the Chinese
Academy of Sciences (QYZDY-SSW-JSC029), the Youth
Innovation Promotion Association of the Chinese Academy
of Sciences (2018031), and the K. C. Wong Education
Foundation.
(9) (a) Wu, J.; Zhou, Y.; Zhou, Y.; Chiang, C.-W.; Lei, A. Electro-
oxidative C(sp3)-H Amination of Azoles via Intermolecular Oxidative
C(sp3)-H/N-H Cross-Coupling. ACS Catal. 2017, 7, 8320−8323.
(b) Gao, X.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. Cobalt(II)-
Catalyzed Electrooxidative C-H Amination of Arenes with Alkyl-
amines. J. Am. Chem. Soc. 2018, 140, 4195−4199. (c) Hu, X.; Zhang,
G.; Bu, F.; Nie, L.; Lei, A. Electrochemical-Oxidation-Induced Site-
Selective Intramolecular C(sp3)-H Amination. ACS Catal. 2018, 8,
9370−9375. (d) Zeng, L.; Li, H.; Tang, S.; Gao, X.; Deng, Y.; Zhang,
G.; Pao, C.-W.; Chen, J.-L.; Lee, J.-F.; Lei, A. Cobalt-Catalyzed
Electrochemical Oxidative C-H/N-H Carbonylation with Hydrogen
Evolution. ACS Catal. 2018, 8, 5448−5453.
(10) Yang, Q. L.; Wang, X. Y.; Lu, J. Y.; Zhang, L. P.; Fang, P.; Mei,
T. S. Copper-Catalyzed Electrochemical C-H Amination of Arenes
with Secondary Amines. J. Am. Chem. Soc. 2018, 140, 11487−11494.
(11) (a) Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A.
Site-selective arene C-H amination via photoredox catalysis. Science
2015, 349, 1326−1330. (b) Nguyen, T. M.; Manohar, N.; Nicewicz,
D. A. anti-Markovnikov hydroamination of alkenes catalyzed by a
two-component organic photoredox system: direct access to
phenethylamine derivatives. Angew. Chem., Int. Ed. 2014, 53, 6198−
201.
REFERENCES
■
(1) (a) Vicentini, C. B.; Romagnoli, C.; Andreotti, E.; Mares, D.
Synthetic Pyrazole Derivatives as Growth Inhibitors of Some
Phytopathogenic Fungi. J. Agric. Food Chem. 2007, 55, 10331−
10338. (b) Hili, R.; Yudin, A. K. Making carbon-nitrogen bonds in
biological and chemical synthesis. Nat. Chem. Biol. 2006, 2, 284.
(c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns and Frequency of Nitrogen
Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med.
Chem. 2014, 57, 10257−10274.
(2) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.
Rational Development of Practical Catalysts for Aromatic Carbon−
Nitrogen Bond Formation. Acc. Chem. Res. 1998, 31, 805−818.
(b) Hartwig, J. F. Evolution of a Fourth Generation Catalyst for the
Amination and Thioetherification of Aryl Halides. Acc. Chem. Res.
2008, 41, 1534−1544. (c) Surry, D. S.; Buchwald, S. L. Biaryl
phosphane ligands in palladium-catalyzed amination. Angew. Chem.,
Int. Ed. 2008, 47, 6338−6361.
(3) (a) Collet, F.; Dodd, R. H.; Dauban, P. Catalytic C-H amination:
recent progress and future directions. Chem. Commun. 2009, 5061−
5074. (b) Monnier, F.; Taillefer, M. Catalytic C-C, C-N and C-O
D
Org. Lett. XXXX, XXX, XXX−XXX