Table 2 Summary of properties relative to ET in RCG
kETb/sÀ1
Jc/cm6 mmolÀ1
c
Ecal (%)
d
Emes (%)
Cmpd.
Forster radius/A
¨
Ffa
tsa/ns
RCG
RCG + H+
47.5
52.1
0.16
0.11
1.5
0.7
6.2 Â 108
82
89
81
87
1.0 Â 10À13
1.7 Â 109
1.7 Â 10À13
a
b
Fluorescence quantum yield and lifetime of the S1 state associated to the R subunit at 541 nm. Calculated with RRCG 36.8 A, estimated by
molecular modelling (SPARTAN), and orientation factor (k2) for Forster transfer of 2/3. Calculated using Photochemcad software and emission
c
¨
d
spectrum of R and absorption spectrum of GC. Energy transfer efficiency calculated from measured quantum yields E = 1 À Ff(RCG)/Ff(R).
The absorption spectra of RCG in its deprotonated and
Notes and references
protonated forms are linear combinations of the absorption of
1 (a) P. Kaszynski, S. Pakhomov, K. F. Tesh and V. G. Young, Jr.,
Inorg. Chem., 2001, 40, 6622–6631; (b) P. Kaszynski and
GC (deprotonated and protonated) and R (Fig. 2), showing
that the closo-carborane has no significant electronic influence.
Excitation of the compounds in their low energy band leads to
strong fluorescence due to the S1–S0 emissive state. The
quantum yields are consistent with those observed with similar
BODIPY dyes.10 The fluorescence is insensitive to the presence
of oxygen and the short lifetimes (around 3–4 ns) are
consistent with a singlet state emission. The measured Stokes
shifts are small (o700 cmÀ1), even for the non-protonated
dimethylaminostyryl species, due to the use of an apolar
solvent leading to an enhanced singlet character.18
A. G. Douglass, J. Organomet. Chem., 1999, 581, 28–38.
2 M. A. Fox and K. Wade, J. Mater. Chem., 2002, 12, 1301–1306.
3 (a) J. Taylor, J. Cruso, A. Newlon, U. English, K. Ruhlandt-Senge
and J. T. Spencer, Inorg. Chem., 2001, 40, 3381–3388; (b) D. G. Allis
and J. T. Spencer, Inorg. Chem., 2001, 40, 3373–3380.
4 J. Vicente, M.-T. Chicote and M. M. Alvarez-Falcon, Organo-
metallics, 2003, 22, 4792–4797 and references therein.
5 H. Jude, H. Disteldorf, S. Fischer, T. Wedge, A. M. Hawkridge,
A. M. Arif, M. F. Hawthorne, D. C. Muddiman and P. J. Stang,
J. Am. Chem. Soc., 2005, 127, 12131–12139.
6 (a) M. Corsini, F. Fabrizi de Biani and P. Zanello, Coord. Chem.
Rev., 2006, 250, 1351–1372; (b) N. S. Hosmane and J. A. Maguire,
Eur. J. Inorg. Chem., 2003, 3989–3999.
It is noticeable that the two systems bearing a carborane
function (GC and RCG) gave a slightly enhanced non-
radiative rate constant compared to the model dye 3. In these
systems the protonation of the dimethylamino groups induced
an increase of the radiative rate constant of the systems.
In the donor–acceptor system (RCG) excitation in the
lowest energy absorption band at 665 nm gave emission
similar to that of GC. However, excitation of this system in
the S0–S1 band, corresponding to the R fragment at 510 nm,
led to a double emission at 541 and 728 nm, and at 541 and
638 nm for the protonated species (Fig. 3). The measured
energy transfer efficiency as well as the rate of energy transfer,
as calculated using PhotochemCAD software22 with a center
to center D–A distance of 36.8 A and an orientation factor k2
7 (a) A. H. Soloway, W. Tjarks, B. A. Barnum, F.-G. Rong,
R. F. Barth, I. M. Codogni and J. G. Wilson, Chem. Rev., 1998,
98, 1515–1562; (b) M. F. Hawthorne and A. Maderna, Chem. Rev.,
1999, 99, 3421–3434.
8 (a) V. I. Bregadze, Chem. Rev., 1992, 92, 209–223;
(b) R. E. Williams, Chem. Rev., 1992, 92, 177–207; (c) J. Plesek,
Chem. Rev., 1992, 92, 269–278; (d) L. A. Leites, Chem. Rev., 1992,
92, 279–323.
9 T. Forster, Discuss. Faraday Soc., 1959, 27, 7–17.
¨
10 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932;
G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int. Ed.,
2008, 47, 1184–1201.
11 A. Burghart, L. H. Thoresen, J. Chen, K. Burgess, F. Bergstro
and L. B.-A. Johansson, Chem. Commun., 2000, 2203–2204;
R. Ziessel, C. Goze, G. Ulrich, M. Cesario, P. Retailleau,
¨
m
´
A. Harriman and J. P. Rostron, Chem.–Eur. J., 2005, 11,
7366–7378; G. Ulrich and R. Ziessel, J. Org. Chem., 2004, 69,
2070–2083.
of 2/3, are consistent with the Forster energy transfer theory.9
¨
12 G. Ulrich, C. Goze, M. Guardigli, A. Roda and R. Ziessel, Angew.
Chem., Int. Ed., 2005, 44, 3694–3698.
13 S. L. Niu, G. Ulrich, R. Ziessel, A. Kiss, P.-Y. Renard and
A. Romieu, Org. Lett., 2009, 11, 2049–2052; S.-L. Niu,
G. Ulrich, P. Retailleau, J. Harrowfield and R. Ziessel, Tetra-
hedron Lett., 2009, 50, 3840–3844.
14 (a) M. Ghirotti, P. F. H. Schwab, M. T. Indelli, C. Chiorboli and
F. Scandola, Inorg. Chem., 2006, 45, 4331–4333; (b) K. Kokado,
Y. Tokoro and Y. Chujo, Macromolecules, 2009, 42, 2925–2930.
15 T. Sasaki and J. M. Tour, Tetrahedron Lett., 2007, 48, 5821–5824;
T. Sasaki, J.-F. Morin, M. Lu and J. M. Tour, Tetrahedron Lett.,
2007, 48, 5817–5820.
16 A. Haefele, G. Ulrich, P. Retailleau and R. Ziessel, Tetrahedron
Lett., 2008, 49, 3716–3721; A. Harriman, L. J. Mallon,
K. J. Elliott, A. Haeffele, G. Ulrich and R. Ziessel, J. Am. Chem.
Soc., 2009, 131, 13375–13386.
The protonation of the G unit doubled the spectral overlap
(Fig. 3) and increased the rate of energy transfer accordingly
(Table 2). Due to the bridge keeping both dyes electronically
isolated and the perfect match between the calculated and
measured energy transfer efficiency, it is clear that only through-
space energy transfer was occurring. Interestingly, now the Stoke
shift is increased to 4750 cmÀ1 and 2800 cmÀ1 in acidic conditions
for RCG using an excitation wavelength of 19 600 cmÀ1
.
In this work we have identified a rigid molecular dyad that
does not participate in Dexter-type energy transfer but where
the constant for FRET is 6.2 Â 108 sÀ1 and in excellent
agreement with Forster theory. The chemistry developed using
¨
the closo-carborane provides synthetic routes to substituents
at the vertices suitable for post-functionalization. The use of a
novel highly soluble and polar green BODIPY dye emitting in
the near-infra is useful to facilitate the purification process and
opens up the possibility to further develop the chemistry
at the unsubstituted b-pyrrolic positions. Current work is
concentrated on the conversion of the substituted carborane
to a metallacarborane in order to switch from an innocent to a
non-innocent spacer.
17 J. Godoy, G. Vives and J. M. Tour, Org. Lett., 2010, 12,
1464–1467.
18 M. Baruah, W. Qin, C. Flors, J. Hofkens, R. A. L. Vallee,
´
D. Beljonne, W. M. Van de Auweraer, M. De Borggraeve and
N. Boens, J. Phys. Chem. A, 2006, 110, 5998.
19 R. Ziessel, G. Ulrich, A. Harriman, M. A. H. Alamiry, B. Stewart
and P. Retailleau, Chem.–Eur. J., 2009, 15, 1359–1369.
20 J. Olmsted, III, J. Phys. Chem., 1979, 83, 2581–2584.
21 G. Ulrich, S. Goeb, A. De Nicola, P. Retailleau and R. Ziessel,
Synlett, 2007, 1517–1520.
c
7980 Chem. Commun., 2010, 46, 7978–7980
This journal is The Royal Society of Chemistry 2010