Journal of the American Chemical Society
COMMUNICATION
Table 1. Carboxylation of Different Allylstannanes and Al-
lylboranes with CO2 in C6D6 Using Complex 4 as the
Catalysta
130, 7826. (f) Correa, A.; Martín, R. J. Am. Chem. Soc. 2009, 131, 15974.
(g) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858. (h)
Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc.
2010, 132, 8872.
(3) (a) Johansson, R.; Wendt, O. F. Dalton Trans. 2007, 488. (b)
Johnson, M. T.; Johansson, R.; Kondrashov, M. V.; Steyl, G.; Ahlquist,
M. S. G.; Roodt, A.; Wendt, O. F. Organometallics 2010, 29, 3521. (c)
Wu, J.; Green, J. C.; Hazari, N.; Hruszkewycz, D. P.; Incarvito, C. D.;
Schmeier, T. J. Organometallics 2010, 29, 6369. (d) Wu, J.; Hazari, N.
Chem. Commun. 2011, 47, 1069.
(4) (a) Tsuji, J. Palladium Reagents and Catalysis: Innovations in
Organic Synthesis; Wiley: Chichester, U.K., 1995. (b) Perspectives in
Organopalladium Chemistry for the 21st Century; Tsuji, J. Elsevier:
Amsterdam, 1999. (c) Organopalladium Chemistry for Organic Synthesis;
Negishi, E., de Meijere, A., Eds.; Wiley: New York, 2002; Vol. 2.
(5) (a) Murahashi, T.; Kurosawa, H. Coord. Chem. Rev. 2002,
231, 207. (b) Murahashi, T.; Ogoshi, S.; Kurosawa, H. Chem. Rec.
2003, 3, 101.
(6) (a) Werner, H.; Kuehn, A.; Tune, D. J.; Krueger, C.; Brauer, D. J.;
Sekutowski, J. C.; Tsay, Y.-H. Chem. Ber. 1977, 110, 1763. (b) Werner,
H.; K€uhn, A. Angew. Chem., Int. Ed. Engl. 1977, 16, 412. (c) Werner, H.;
Kraus, H.-J. Chem. Ber. 1980, 113, 1072. (d) Yamamoto, T.; Saito, O.;
Yamamoto, A. J. Am. Chem. Soc. 1981, 103, 5600. (e) Yamamoto, T.;
Akimoto, M.; Saito, O.; Yamamoto, A. Organometallics 1986, 5, 1559. (f)
Sakaki, S.; Takeuchi, K.; Sugimoto, M.; Kurosawa, H. Organometallics
1997, 16, 2995. (g) Markert, C.; Neuburger, M.; Kulicke, K.; Meuwly,
M.; Pfaltz, A. Angew. Chem., Int. Ed. 2007, 46, 5892.
substrate
time (h)
conversion (%)
Me3Sn(2-methylallyl)
nBu3Sn(2-methylallyl)
Me3Sn(allyl)
20
24
26
24
26
55
79
80
70
82
60
81
nBu3Sn(allyl)
(pinacol)B(allyl)
(pinacol)B(2-methylallyl)
a Reaction conditions: substrate (0.118 mmol), catalyst 4 (3.8 mg,
0.0059 mmol), and CO2 (1 atm) in 0.25 mL of C6D6 at room
temperature (unless otherwise stated).
dimeric system is that it is significantly easier to synthesize than
monomeric systems and is more stable; thus, there is less catalyst
decomposition, and the catalyst is capable of higher turnover
numbers.
(7) (a) Henc, B.; Jolly, P. W.; Salz, R.; Stobbe, S.; Wilke, G.; Benn, R.;
Mynott, R.; Seevogel, K.; Goddard, R.; Kr€uger, C. J. Organomet. Chem.
1980, 191, 449. (b) Jolly, P. W.; Krueger, C.; Schick, K. P.; Wilke, G. Z.
Naturforsch., B: Anorg. Chem., Org. Chem. 1980, 35B, 926. (c) Krause, J.;
Goddard, R.; Mynott, R.; P€orschke, K.-R. Organometallics 2001,
20, 1992.
(8) Boyd, P. D. W.; Edwards, A. J.; Gardiner, M. G.; Ho, C. C.;
Lemee-Cailleau, M.-H.; McGuinness, D. S.; Riapanitra, A.; Steed, J. W.;
Stringer, D. N.; Yates, B. F. Angew. Chem., Int. Ed. 2010, 49, 6315.
(9) Werner, H.; Kraus, H.-J.; Thometzek, P. Chem. Ber. 1982,
1115, 2914.
In conclusion, we have developed a facile synthesis for the
preparation of allyl-bridged PdI dimers and performed the first
reactivity studies with these molecules. An NHC-supported
dimer is one of the most active catalysts reported to date for
the catalytic carboxylation of allylstannanes and allylboranes with
CO2. From our results, it appears that bridging allyls react more
like terminal η1-allyls than η3-allyls, and future work will look to
further compare the reactivity of bridging allyls with terminal η1-
allyls and understand the mechanism of CO2 insertion into
bridging allyls.
(10) Deacon, G. B.; Phillips, R. J. Coord. Chem. Rev. 1980, 33, 227.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental protocols, char-
b
acterization data for all new compounds, and X-ray crystal-
lographic data (CIF). This material is available free of charge
’ AUTHOR INFORMATION
Corresponding Author
Author Contributions
†These authors contributed equally.
’ REFERENCES
(1) (a) Leitner, W. Coord. Chem. Rev. 1996, 153, 257. (b) Yin, X.;
Moss, J. R. Coord. Chem. Rev. 1999, 181, 27. (c) Aresta, M.; Dibenedetto,
A. Dalton Trans. 2007, 2975. (d) Correa, A.; Martín, R. Angew. Chem.,
Int. Ed. 2009, 48, 6201. (e) Darensbourg, D. J. Inorg. Chem. 2010,
49, 10765.
(2) (a) Shi, M.; Nicholas, K. M. J. Am. Chem. Soc. 1997, 119, 5057.
(b) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006,
128, 8706. (c) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008,
130, 15254. (d) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int.
Ed. 2008, 47, 5792. (e) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008,
3283
dx.doi.org/10.1021/ja110708k |J. Am. Chem. Soc. 2011, 133, 3280–3283