J. Walkowiak, B. Marciniec / Tetrahedron Letters 51 (2010) 6177–6180
6179
O
O
O
O
B
B
B
R
O
O
[Ru]-H
O
B
O
O
H
H
O
O
O
O
O
B
R
OH
H
B
O
[Ru]
B
R
H
[Ru]
B
[Ru]
O
B
O
O
R
B
H
B
H
O
OH
O
O
B
O
HO
R
B
-
OH
O
O
[Ru]-
B
Scheme 1. Mechanism of the O-borylation of boronic acids with vinylboronates.
PCy3
PCy3
O
O
O
O
O
O
Cl
O
THF-d8
Cl
B
B
Ru
H
+
Ru
B
+ HO B
T=60 oC
4 d
ð4Þ
OC
OC
O
O
PCy3
PCy3
(III)
(I)
On the basis of these experiments and the previously proposed
this article can be found, in the online version, at doi:10.1016/
mechanism for the O-borylation of silanols7a and alcohols8 with
vinylboronates, a catalytic mechanism for this new O-borylation
reaction of boronic acids is proposed (Scheme 1) based on the acti-
vation of the B–C bond in the vinylborane and the H–O bond in the
boronic acid.
References and notes
1. Marciniec, B. Acc. Chem. Res. 2007, 40, 943–952.
2. Marciniec, B. Coord. Chem. Rev. 2005, 249, 2374–2390.
The emboldened cycle shows the main mechanism for the O-
borylation process. The product with one hydroxy group connected
to the boron atom may undergo subsequent oxidative addition to
the ruthenium–boryl complex and then reductive elimination giv-
ing a diboryloxy-substituted boronic acid derivative, which opens a
new route to linear inorganic–organometallic polymers with boron
atoms in the structure.
This coupling reaction allows the synthesis not only of symmet-
ric, but also of non-symmetric boroxanes, which are difficult to ob-
tain via typical synthetic processes. The much lower reactivity of
vinylboronates compared to that of vinylsilanes and vinylgerm-
anes is responsible for this high chemoselectivity, which is in
agreement with previously published results.7,8a
In conclusion, we have reported a new catalytic O-borylation of
boronic acids with vinylboronates. This process extends the role of
vinylboronates as hydrogen acceptors to form borylated products
and indicates that such a strategy can also be used for the boryla-
tion of other heteroatom–hydrogen bonds. The boroxanes obtained
may be used as monomers for the synthesis of polymers with bor-
yl–oxygen–boryl bridges or substrates for new ceramic materials.
3. Marciniec, B.; Jankowska, M.; Pietraszuk, C. Chem. Commun. 2005, 663–665.
4. (a) Marciniec, B.; Ławicka, H.; Majchrzak, M.; Kubicki, M.; Kownacki, I. Chem.
Eur. J. 2006, 12, 244–250; (b) Marciniec, B.; Ławicka, H. Appl. Organomet. Chem.
2008, 22, 510–515.
5. (a) Marciniec, B.; Dudziec, B.; Kownacki, I. Angew. Chem., Int. Ed. 2006, 45,
8180–8184; (b) Marciniec, B.; Ławicka, H.; Dudziec, B. Organometallics 2007, 26,
5188–5196; (c) Marciniec, B.; Ławicka, H.; Dudziec, B. J. Organomet. Chem.
2008, 693, 235–240; (d) Dudziec, B.; Marciniec, B. Organometallics 2008, 27,
5598–5604.
6. Kakiuchi, F.; Matsumoto, M.; Sonoda, M.; Fukuyama, T.; Chatani, N.; Murai, S.;
Furukawa, N.; Seki, Y. Chem. Lett. 2000, 750–751.
7. (a) Marciniec, B.; Pawluc´, P.; Hreczycho, G.; Macina, A.; Madalska, M.
Tetrahedron Lett. 2008, 49, 1310–1313; (b) Marciniec, B.; Walkowiak, J. Chem.
Commun. 2008, 2695–2697.
8. (a) Marciniec, B.; Walkowiak, J. Synlett 2009, 2433–2436; (b) Park, J.-W.; Chang,
H.-J.; Jun, Ch.-H. Synlett 2006, 771–775; (c) Park, J.-W.; Jun, Ch.-H. Org. Lett.
2007, 9, 4073–4076.
9. (a) Maw, G. N.; Thirsk, C.; Toujas, J.-L.; Vaultier, M.; Whiting, A. Synlett 2004,
1183–1186; (b) Barrett, A. G. M.; Bennett, A. J.; Menzer, S.; Smith, M. L.; White,
A. J. P.; Williams, D. J. J. Org. Chem. 1999, 64, 162–171; (c) Prandi, C.;
Deagostino, A.; Venturello, P.; Occiato, E. Org. Lett. 2005, 7, 4345–4348; (d)
Desurmont, G.; Dalton, S.; Giolando, D.; Srebnik, M. J. Org. Chem. 1996, 61,
7943–7946.
10. CVD of Nonmetals; Rees, S., Ed.; VCH: New York, 1996; (b) Pena-Alonso, Q. R.;
Mariotto, G.; Gervais, Ch.; Babonneau, F.; Soraru, G. D. Chem. Mater. 2007, 19,
5694–5702; (c) Soraru, G. D.; Dallabona, N.; Gervais, Ch.; Babonneau, F. Chem.
Mater. 1999, 11, 910–919.
11. (a) Niu, W.; Smith, M. D.; Lavigne, J. J. J. Am. Chem. Soc. 2006, 128, 16466–
16467; (b) Rambo, B. M.; Lavigne, J. J. Chem. Mater. 2007, 19, 3732–3739; (c)
Christinat, N.; Croisier, E.; Scopelliti, R.; Cascella, M.; Röthlisberger, U.; Severin,
K. Eur. J. Inorg. Chem. 2007, 5177–5181; (d) Niu, W.; Rambo, B.; Smith, M. D.;
Lavigne, J. J. Chem. Commun. 2005, 5166–5168.
Acknowledgments
This work was supported by the Ministry of Science and Higher
Education (Poland) (NN204265538).
12. Mehta, M. A.; Fujinami, T.; Inoue, S.; Matsushita, K.; Miwa, T.; Inoue, T.
Electrochim. Acta 2000, 45, 1175–1180.
Supplementary data
13. (a) Korich, A. L.; Iovine, P. M. Dalton Trans. 2010, 39, 1423–1431; (b) Maly, K. E.
J. Mater. Chem. 2009, 19, 1781–1787; (c) Han, S. S.; Furukawa, H.; Yaghi, O. M.;
Goddard, W. A. J. Am. Chem. Soc. 2008, 130, 11580–11581; (d) Liu, W.; Pink, M.;
Lee, D. J. Am. Chem. Soc. 2009, 131, 8703–8707; (e) Mastalerz, M. Angew. Chem.,
Supplementary data associated (spectroscopic data of new
boroxane compounds and typical experimental procedures) with