Y.-J. Lee et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6882–6885
6885
Table 4
p-HMB. A tetrahydro-b-carboline 9j with ICL inhibitory activities
higher than those of natural products (1–7) was also discovered.
It would be worthwhile to emphasize that all of the synthesized
compounds were predicted to have druggable physicochemical
properties like natural products 1 and 7.11 Further investigations
into the development of efficient antibacterial agents based on
these results are still in progress.
Minimum inhibitory concentrations (MICs) of selected synthesized analogs against
bacterial strainsa,b
Entry
Compound
MIC (
l
g/mL,
lM)
SA
BS
ST
PV
ML
EC
1
2
3
4
5
6
7
8
9
8a
8d
8e
8h
9g
9h
9i
9j
9k
10a
10b
Ampicillin
>200
>200
>200
>200
100
>200
12.5
6.25
12.5
>200
>200
1.56
>200
>200
>200
>200
100
>200
6.25
12.5
6.25
>200
>200
0.78
>200
>200
>200
>200
100
>200
12.5
12.5
6.25
>200
>200
1.56
>200
>200
>200
>200
100
>200
6.25
12.5
6.25
>200
>200
0.78
>200
>200
>200
>200
100
>200
12.5
12.5
6.25
>200
>200
0.78
>200
>200
>200
>200
>200
>200
50
50
50
>200
>200
50
Acknowledgments
This research was supported by Korea Ocean Research and
Development Institute (PE98416) and the Ministry of Land, Trans-
port and Maritime Affairs, Korea (PM55421).
10
11
12
References and notes
a
MIC value represents concentration giving complete inhibition relative to the
negative control. See Ref. 7a for detailed procedures.
1. (a) Li, J. W. H.; Vederas, J. C. Science 2009, 324, 161; (b) Harvey, A. L. Drug Discov.
Today 2008, 13, 894; (c) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
2. Lam, K. S. Trends Microbiol. 2007, 15, 279. and references cited therein.
3. (a) John, J. E. Drug Discov. Today 2010, 15, 409; (b) Bugni, T. S.; Richard, B.;
Bhoite, L.; Cimbora, D.; Harper, M. K.; Ireland, C. M. J. Nat. Prod. 2008, 71, 1095;
(c) Messer, R.; Fuhrer, C. A.; Häner, R. Curr. Opin. Chem. Biol. 2005, 9, 259; (d)
Boldi, A. M. Curr. Opin. Chem. Biol. 2004, 8, 281.
b
SA, Staphylococcus aureus ATCC 6538p; BS, Bacillus subtilis ATCC 6633; ST, Sal-
monella typhimurium ATCC 14028; PV, Proteus vulgaris ATCC 3851; ML, Micrococcus
luteus IFC 12708; EC, Escherichia coli ATCC 25922.
as given in Table 3. Neither of the derivatives of 9b (9a, 9c) exhib-
ited any activities (entries 1–3). Compounds bearing a pentyl
group instead of carboxylic acid (9b and 9e) also showed no activ-
ities (entries 4 and 5).
When carboxylic acid groups were replaced with the phenyl
ring, dramatic increases in SrtA inhibitory activities were observed
4. (a) Lee, H.-S.; Yoon, K.-M.; Han, Y.-R.; Lee, K.-J.; Chung, S.-C.; Kim, T.-I.; Lee, S.-
H.; Shin, J.; Oh, K.-B. Bioorg. Med. Chem. Lett. 2009, 19, 1051; (b) Lee, H.-S.; Lee,
T.-H.; Yang, S. H.; Shin, H. J.; Shin, J.; Oh, K.-B. Bioorg. Med. Chem. Lett. 2007, 17,
2483.
5. (a) Ton-That, H.; Schneewind, O. J. Biol. Chem. 1999, 274, 24316; (b)
Mazmanian, S. K.; Liu, G.; Ton-That, H.; Schneewind, O. Science 1999, 285, 760.
6. (a) Muñoz-Elías, E. J.; McKinney, J. D. Nat. Med. 2005, 11, 638; (b) Lorez, M. C.;
Fink, G. R. Nature 2001, 412, 83.
7. (a) Frankel, B. A.; Bentley, M.; Kruger, R. G.; McCafferty, D. G. J. Am. Chem. Soc.
2004, 126, 3404; (b) Kudryavtsev, K.; Bentley, M. L.; McCafferty, D. G. Bioorg.
Med. Chem. 2009, 17, 2886; (c) Suree, N.; Yi, S. W.; Thieu, W.; Marohn, M.;
Damoiseaux, R.; Chan, A.; Jung, M. E.; Clubb, R. T. Bioorg. Med. Chem. 2009, 17,
7174; (d) Kim, S.-H.; Shin, D.-S.; Oh, M.-N.; Chung, S.-C.; Lee, C.-S.; Oh, K.-B.
Biosci. Biotechnol. Biochem. 2004, 68, 421; (e) Park, B.-S.; Kim, J.-G.; Kim, M.-R.;
Lee, S.-E.; Takeoka, G. R.; Oh, K.-B.; Kim, J.-H. J. Agric. Food Chem. 2005, 53, 9005;
(f) Jang, K. H.; Chung, S.-C.; Shin, J.; Lee, S.-H.; Kim, T.-I.; Lee, H.-S.; Oh, K.-B.
Bioorg. Med. Chem. Lett. 2007, 17, 5366.
8. (a) Lee, H.-S.; Lee, T.-H.; Lee, J.-H.; Chae, C.-S.; Chung, S.-C.; Shin, D.-S.; Shin, J.;
Oh, K.-B. J. Agric. Food Chem. 2007, 55, 6923; (b) Yang, H.-C.; Yu, J.; Oh, K.-B.;
Shin, D.-S.; Cho, W.-J.; Shin, J.; Kim, S. Arch. Pharm. Res. 2007, 30, 955.
9. For the cloning, expression and purification of ICL from the genomic DNA of C.
albicans (ATCC 10231) and the procedure for the evaluation of inhibitory
activities of compounds against ICL, see: (a) Shin, D.-S.; Kim, S.; Yang, H.-C.; Oh,
K.-B. J. Microbiol. Biotechnol. 2005, 15, 652; (b) Hautzel, R.; Anke, H.; Sheldric,
W. S. J. Antibiot. 1990, 43, 1240.
in the case of 9g (IC50: 28
115 M); however, 9f remained inactive (entries 6–8). The oxida-
tion of 9f and 9h to 10a (IC50: 24 g/mL, 97 M) and 10b (IC50
g/mL, 25 M), respectively, caused further increases in activi-
lg/mL, 106 lM) and 9h (IC50: 32 lg/mL,
l
l
l
:
7
l
l
ties (entries 12 and 13), and the activities of these four compounds
were higher than that of p-HMB.
Increasing the size of the phenyl ring by further substitutions
resulted in significant improvements in ICL inhibitory activities
(entries 9–11). In particular, compound 9j bearing the m-methoxy-
phenyl ring exhibited higher ICL inhibitory activity (IC50: 21
lg/
mL, 75 M) higher than the natural product 7 (29 g/mL, 89 l
l
l
M),
which is the most potent ICL inhibitor among the natural products
(Table 1, entry 7).
The effects of the obtained enzyme inhibitors on the bacterial
growth were determined by employing a two fold microtiter broth
dilution method against various bacterial strains (Table 4). The
minimum inhibitory concentrations (MICs) were determined
according to a published protocol.7a SrtA inhibitors (entries 1–6,
entries 10–11) exhibited no growth inhibitory activity against all
types of strains, except in the case of 9g that insignificantly inhib-
ited the growth of most cell lines (entry 5). In the case of the SrtA
inhibitor, this result might suggest selective inhibition of SrtA or
low toxicity of these compounds as it is known that SrtA inhibitors
disrupt the pathogenesis of bacterial infections without affecting
the microbial viability.14 On the other hand, ICL inhibitors
(9i–9k; entries 7–9) caused moderate to high growth inhibitions
of most of the strains as expected.
10. For the procedure for the evaluation of inhibitory activities of compounds
against SrtA, see Ref. 7d.
11. Natural products 1 and 7 show zero violations of Lipinski’s rule of five and
Veber rules. The physicochemical properties such as log P, polar surface are,
number of hydrogen bond donors and acceptors, and number of rotational
bonds were predicted using Molinspirations (Molinspiration Cheminformatics,
Nova ulica 61, SK-900 26 Slovensky Grob, Slovak Republic. Available online at:
see: (a) Lipinski, C. A.; Lombardo, F.; Dominy, B. W. Adv. Drug Deliv. Rev. 1997,
23, 3; For Veber rules, see; (b) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B.
R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615.
12. (a) Thompson, M. J.; Borsenberger, V.; Louth, J. C.; Judd, K. E.; Chen, B. J. Med.
Chem. 2009, 52, 7503; (b) Gitto, R.; Luca, D. L.; Ferro, S.; Citraro, R.; Sarro, G. D.;
Costa, L.; Ciranna, L.; Chimirri, A. Bioorg. Med. Chem. 2009, 17, 1640.
13. (a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797; (b) Trujillo, J. I.; Meyers, M.
J.; Anderson, D. R.; Hegde, S.; Mahoney, M. W.; Vernier, W. F.; Buchler, I. P.; Wu,
K. W.; Yang, S.; Hartman, S. J.; Reitz, D. B. Bioorg. Med. Chem. Lett. 2007, 17,
4657; (c) Kawashima, Y.; Horiguchi, A.; Taguchi, M.; Tuyuki, Y.; Karasawa, Y.;
Araki, H.; Hatayama, K. Chem. Pharm. Bull. 1995, 43, 783; (d) Shen, Y.-C.; Chen,
C.-Y.; Hsieh, P. W.; Duh, C.-Y.; Lin, Y.-M.; Ko, C.-L. Chem. Pharm. Bull. 2005, 53,
32.
In conclusion, we have prepared a series of synthesized analogs
of natural products, which exhibit ICL and SrtA inhibitory activi-
ties. Among the 21 synthesized analogs, an indoleglyoxamide 8d,
an indoleglyoxylate 8e, and four b-carbolines (9g, 9h, 10a, and
10b) exhibited SrtA inhibitory activities higher than that of
14. (a) Jonsson, I. M.; Mazmanian, S. K.; Schneewind, O.; Bremell, T.; Tarkowski, A.
Microbes Infect. 2003, 5, 775; (b) Mazmanian, S. K.; Liu, G.; Lenoy, E. R.;
Schneewind, O. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5510.