Published on Web 11/29/2010
Scope and Limitations of Cyclopropanations with Sulfur
Ylides
Roland Appel, Nicolai Hartmann, and Herbert Mayr*
Department Chemie, Ludwig-Maximilians-UniVersita¨t Mu¨nchen, Butenandtstrasse 5-13,
81377 Mu¨nchen, Germany
Received September 20, 2010; E-mail: herbert.mayr@cup.uni-muenchen.de
Abstract: The rates of the reactions of the stabilized and semistabilized sulfur ylides 1a-g with
benzhydrylium ions (2a-e) and Michael acceptors (2f-v) have been determined by UV-vis spectroscopy
in DMSO at 20 °C. The second-order rate constants (log k2) of these reactions correlate linearly with the
electrophilicity parameters E of the electrophiles 2 as required by the correlation log k2 ) s(N + E), which
allowed us to calculate the nucleophile-specific parameters N and s for the sulfur ylides 1a-g. The rate
constants for the cyclopropanation reactions of sulfur ylides with Michael acceptors lie on the same
correlation line as the rate constants for the reactions of sulfur ylides with carbocations. This observation
is in line with a stepwise mechanism for the cyclopropanation reactions in which the first step, nucleophilic
attack of the sulfur ylides at the Michael acceptors, is rate determining. As the few known pKaH values for
sulfur ylides correlate poorly with their nucleophilic reactivities, the data reported in this work provide the
first quantitative approach to sulfur ylide reactivity.
Introduction
displacement to yield an epoxide, an aziridine, or a cyclopro-
pane, respectively (Scheme 1).
Sulfur ylides have emerged to an important class of reagents
in organic synthesis. Though the first report on the isolation of
a sulfur ylide by Ingold and Jessop was already published in
1930,1 a systematic investigation of sulfur ylides started only
in the 1960s when these compounds were recognized as versatile
reagents for the preparation of three-membered carbo- and
heterocycles.2 Eventually, the use of chiral sulfur ylides or chiral
electrophilic substrates gave rise to a variety of stereoselective
sulfur ylide-mediated cyclization reactions.3 Detailed investiga-
tions of epoxidation,4 cyclopropanation,4b,5 and aziridination
reactions6 revealed a common mechanistic course. In all cases,
the sulfur ylide initially attacks at an electrophilic carbon center
(i.e., aldehyde, imine, or Michael acceptor) to form a betaine
intermediate, which undergoes an intramolecular nucleophilic
(3) For selected reviews, see: (a) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K.
Chem. ReV. 1997, 97, 2341–2372. (b) Dai, L.-X.; Hou, X.-L.; Zhou,
Y.-G. Pure Appl. Chem. 1999, 71, 369–376. (c) Clark, J. S. In
Nitrogen, Oxygen and Sulfur Ylide Chemistry; Clark, J. S., Ed.; Oxford
University Press: New York, 2002; pp 1-114. (d) Aggarwal, V. K.;
Richardson, J. In Science of Synthesis; Georg Thieme Verlag: Stuttgart,
2004; Vol. 27, pp 21-104. (e) Aggarwal, V. K.; Winn, C. L. Acc.
Chem. Res. 2004, 37, 611–620. (f) Aggarwal, V. K.; Badine, D. M.;
Moorthie, V. A. In Aziridines and Epoxides in Organic Synthesis;
Yudin, A. K., Ed.; Wiley-VCH: Weinheim, 2006; pp 1-35. (g)
McGarrigle, E. M.; Aggarwal, V. K. In EnantioselectiVe Organoca-
talysis; Dalko, P. I., Ed.; Wiley-VCH: Weinheim, 2007; pp 357-
390. (h) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.;
Riches, S. L.; Aggarwal, V. K. Chem. ReV. 2007, 107, 5841–5883.
(i) Aggarwal, V. K.; Crimmin, M.; Riches, S. In Science of Synthesis;
Georg Thieme Verlag: Stuttgart, 2008; Vol. 37, pp 321-406. (j) Brie`re,
J.-F.; Metzner, P. In Organosulfur Chemistry in Asymmetric Synthesis;
Toru, T., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2008; pp 179-
208. (k) Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937–948.
(4) (a) Yoshimine, M.; Hatch, M. J. J. Am. Chem. Soc. 1967, 89, 5831–
5838. (b) Johnson, C. R.; Schroeck, C. W. J. Am. Chem. Soc. 1971,
93, 5303–5305. (c) Volatron, F.; Eisenstein, O. J. Am. Chem. Soc.
1987, 109, 1–14. For the special case of a Corey-Chaykovsky reaction
with oxathietane formation, see: (d) Kawashima, T.; Ohno, F.; Okazaki,
R.; Ikeda, H.; Inagaki, S. J. Am. Chem. Soc. 1996, 118, 12455–12456.
(e) Aggarwal, V. K.; Calamai, S.; Ford, J. G. J. Chem. Soc., Perkin
Trans. 1 1997, 593–599. (f) Lindvall, M. K.; Koskinen, A. M. P. J.
Org. Chem. 1999, 64, 4596–4606. (g) Myllyma¨ki, V. T.; Lindvall,
M. K.; Koskinen, A. M. P. Tetrahedron 2001, 57, 4629–4635. (h)
Aggarwal, V. K.; Harvey, J. N.; Richardson, J. J. Am. Chem. Soc.
2002, 124, 5747–5756. (i) Silva, M. A.; Bellenie, B. R.; Goodman,
J. M. Org. Lett. 2004, 6, 2559–2562. (j) Aggarwal, V. K.; Bi, J.
Beilstein J. Org. Chem. 2005, 1, DOI: 10.1186/1860-5397-1-4. (k)
Aggarwal, V. K.; Hebach, C. Org. Biomol. Chem. 2005, 3, 1419–
1427. (l) Aggarwal, V. K.; Charmant, J. P. H.; Fuentes, D.; Harvey,
J. N.; Hynd, G.; Ohara, D.; Picoul, W.; Robiette, R.; Smith, C.; Vasse,
J.-L.; Winn, C. L. J. Am. Chem. Soc. 2006, 128, 2105–2114. (m)
Edwards, D. R.; Du, J.; Crudden, C. M. Org. Lett. 2007, 9, 2397–
2400. (n) Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Org.
Lett. 2007, 9, 5481–5484.
(1) Ingold, C. K.; Jessop, J. A. J. Chem. Soc. 1930, 713–718.
(2) (a) Johnson, A. W.; LaCount, R. B. Chem. Ind. (London) 1958, 1440–
1441. (b) Johnson, A. W.; LaCount, R. B. J. Am. Chem. Soc. 1961,
83, 417–423. (c) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc.
1962, 84, 867–868. (d) Corey, E. J.; Chaykovsky, M. J. Am. Chem.
Soc. 1962, 84, 3782–3783. (e) Franzen, V.; Driessen, H.-E. Tetrahe-
dron Lett. 1962, 3, 661–662. (f) Franzen, V.; Driesen, H.-E. Chem.
Ber. 1963, 96, 1881–1890. (g) Johnson, A. W.; Hruby, V. J.; Williams,
J. L. J. Am. Chem. Soc. 1964, 86, 918–922. (h) Corey, E. J.;
Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353–1364. (i) Johnson,
A. W.; Amel, R. T. Tetrahedron Lett. 1966, 7, 819–823. (j) Ratts,
K. W.; Yao, A. N. J. Org. Chem. 1966, 31, 1185–1188. (k) Ratts,
K. W.; Yao, A. N. J. Org. Chem. 1966, 31, 1689–1693. (l) Casanova,
J.; Rutolo, D. A. Chem. Commun. (London) 1967, 1224–1225. (m)
Nozaki, H.; Tunemoto, D.; Matubara, S.; Kondoˆ, K. Tetrahedron 1967,
23, 545–551. (n) Payne, G. B. J. Org. Chem. 1967, 32, 3351–3355.
(o) Trost, B. M. J. Am. Chem. Soc. 1967, 89, 138–142. (p) Johnson,
A. W.; Amel, R. T. J. Org. Chem. 1969, 34, 1240–1247. (q) Adams,
J.; Hoffman, L.; Trost, B. M. J. Org. Chem. 1970, 35, 1600–1604. (r)
Jeckel, D.; Gosselck, J. Tetrahedron Lett. 1972, 13, 2101–2104. (s)
Trost, B. M.; Melvin, L. S. Sulfur Ylides. Emerging Synthetic
Intermediates; Academic Press: New York, 1975.
9
17894 J. AM. CHEM. SOC. 2010, 132, 17894–17900
10.1021/ja1084749 2010 American Chemical Society