W.-W. du Mont, H. Marsmann et al.
FULL PAPER
[2]
[3]
Stable dihalides of the heavier elements Ge, Sn, Pb are access-
ible as starting materials, and the chemistry of transient dihalo-
genocarbenes is well established: W. Kirmse, Carbene, Carbeno-
ide und Carbenanaloge, Verlag Chemie, Weinheim 1969.
P. L. Timms, Inorg. Chem. 1968, 7, 387–389; W. H. Atwell,
D. R. Weyenberg, Angew. Chem. 1969, 81, 485–493; Angew.
Chem. Int. Ed. Engl. 1969, 8, 469; O. M. Nefedov, M. N. Man-
akov, Angew. Chem. 1966, 78, 1039–1056; Angew. Chem. Int.
Ed. Engl. 1966, 5, 1021; O. M. Nefedov, S. P. Kolesnikov, A. I.
Ioffe, Organomet. Chem. Rev. 1977, 5, 181–219.
Reaction of 1a with tBuP(SiCl3)2: A mixture of 2.33 g (10.4 mmol)
of 1a and 3.7 g (10.4 mmol) tert-butylbis(trichlorsilyl)phosphane
was refluxed for 5 h in 20 mL of dichloromethane. The consump-
tion of 1a and tBuP(SiCl3)2 in favour of compound 7 was con-
firmed by 31P-NMR spectroscopy. The solvent and silicon tetra-
chloride were removed in vacuo; attempts to distil the orange reside
led to thermal decomposition. In the residue from the attempted
distillation, compounds 7 and 8 could be identified by 31P NMR
spectroscopy. Separation of 8 from this mixture was not achieved.
7: 1H NMR (C6D6): δ = 0.2 ppm [d, 9 H, 4J(H,P) = 2.4 Hz Si-
(CH3)3], 0.4 ppm [s, 9 H, Si(CH3)3], 1.3 ppm [d, 9 H, 3J(H,P) =
13.1 Hz C(CH3)3]. 13C NMR (C6D6): δ = 2.0 ppm [d, 3J(C,P) =
[4]
[5]
E. Hengge, D. Kovar, Z. Anorg. Allg. Chem. 1979, 458, 163; H.
Stüger, E. Hengge, Monatsh. Chem. 1988, 119, 873; J. R. Koe,
D. R. Powell, J. J. Buffy, S. Hayase, R. West, Angew. Chem.
1998, 110, 1514–1515; Angew. Chem. Int. Ed. 1998, 37, 1441–
1442.
D. Kummer, H. Köster, M. Speck, Angew. Chem. 1969, 81,
574–575; Angew. Chem. Int. Ed. Engl. 1969, 8, 599; D. Kummer,
H. Köster, Angew. Chem. 1969, 81, 897; Angew. Chem. Int. Ed.
Engl. 1969, 8, 878.
H. H. Karsch, F. Bienlein, A. Sladek, M. Heckel, K. Burger, J.
Am. Chem. Soc. 1995, 117, 5160–5161.
a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke,
Angew. Chem. 2009, 121, 5793–5796; b) A. C. Filippou, O.
Chernov, G. Schnakenburg, Angew. Chem. 2009, 121, 5797–
5800.
a) L. Müller, W.-W. du Mont, F. Ruthe, P. G. Jones, H. C.
Marsmann, J. Organomet. Chem. 1999, 579, 156–163; b) W.-
W. du Mont, L. Müller, R. Martens, P. M. Papathomas, B. A.
Smart, H. E. Robertson, D. W. H. Rankin, Eur. J. Inorg. Chem.
1999, 1381–1392; c) S. L. Hinchley, L. J. McLachlan, H. E. Ro-
bertson, D. W. H. Rankin, E. Seppälä, W.-W. du Mont, Inorg.
Chim. Acta 2007, 360, 1323–1331.
W. W. du Mont, T. Gust, E. Seppälä, C. Wismach, P. G. Jones,
L. Ernst, J. Grunenberg, H. C. Marsmann, Angew. Chem. 2002,
114, 3977–3979; Angew. Chem. Int. Ed. 2002, 41, 3829–3832.
3
4
14.7 Hz, Si(CH3)3], 4.3 ppm [dd, J(C,P) = 7.8, J(C,P) = 2.9 Hz,
Si(CH3)3], 32.2 ppm [dd, 2J(C,P)
C(CH3)3], 35.5 ppm [dd, 1J(C,P)
=
=
12.4, 3J(C,P)
23.7, 2J(C,P)
=
=
3.6 Hz,
3.8 Hz,
C(CH3)3], 236.5 ppm [dd, 1J(C,P) = 99.7, 2J(C,P) = 11.2 Hz, C=P],
29Si NMR (C6D6): δ = –4.1 ppm [dd, 2J(Si,P) = 11.7, 3J(Si,P) =
12.8 Hz, Si(CH3)3], 0.1 ppm [dd, 2J(Si,P) = 39.2, 3J(Si,P) =
[6]
[7]
22.1 Hz, Si(CH3)3], 31P NMR (C6D6): δ = –24.9 ppm [d, J(P,P) =
1
232.4 Hz, 29Si satellites: 1J(Si,P) = 112.6, J(Si,P) = 22.1, J(Si,P)
3
3
= 12.8 Hz, P(SiCl3)tBu], 389.3 ppm [d, 1J(P,P) = 232.4 Hz, 29Si sat-
2
2
ellites: J(Si,P) = 39.2, J(Si,P) = 11.7 Hz, C=P]. MS(EI) m/z (%)
= 444 (1) [not assigned], 412 (2) [M]+, 387 (2) [?]+, 355 (3) [M –
tBu]+, 325 (4) [M – SiMe3–CH2]+, 209 (14) [P(SiCl3) Bu]+, 147 (40)
[Me3SiCPP]+, 93(100) [tBuH+Cl]+, 73 (82) [Me3Si]+, 57(56) [tBu]+.
[8]
8: 31P NMR (C6D6): δ = 531.3 ppm [d, 1J(P,P) = 628.9 Hz,
1
P=PtBu], 604.0 [d, J(P,P) = 628.9 Hz, P=PtBu].
X-ray Structure Determination of Compound 4b: Crystal data:
¯
C34H44Cl6P2Si6, Mr = 895.87, triclinic, space group P1, a =
[9]
9.4125(4), b = 10.9299(4), c = 11.8668(4) Å, α = 66.618(3), β =
71.536(3), γ = 88.715(3)°, V = 1055.4 Å3, Z = 1, ρcalc = 1.410 Mg/
m3, µ(Mo-Kα) = 0.68 mm–1, F(000) = 464, T = 100 K; yellow block
0.45ϫ0.3ϫ0.2 mm3. Of 37527 reflections collected to 2θ 63°, 6912
were independent (Rint = 0.021). Final R1 = 0.0209 [IϾ2σ(I)], wR2
= 0.0601 (all data) for 221 parameters; S = 1.05, max. ∆ρ 0.5 eÅ–3.
[10]
[11]
A. Zanin, M. Karnop, J. Jeske, P. G. Jones, W.-W. du Mont, J.
Organomet. Chem. 1994, 475, 95.
a) R. Martens, W.-W. du Mont, L. Lange, Z. Naturforsch., Teil
B 1991, 46, 1609; b) R. Martens, W.-W. du Mont, Chem. Ber.
1992, 125, 657; c) L.-P. Müller, A. Zanin, W.-W. du Mont, J.
Jeske, R. Martens, P. G. Jones, Chem. Ber./Recueil 1997, 130,
377; d) L. Müller, W. W. du Mont, F. Ruthe, P. G. Jones, H. C.
Marsmann, J. Organomet. Chem. 1999, 579, 156–163.
E. Niecke, H. J. Metternich, R. Streubel, Chem. Ber. 1990, 123,
67–69.
E. Seppälä, W.-W. du Mont, T. Gust, C. Wismach, J. Or-
ganomet. Chem. 2004, 689, 1331.
D. Bugnariu, Dissertation, Technical University of
Braunschweig, 2007.
T. A. Banford, A. G. Mc Diarmid, Inorg. Nucl. Chem. Lett.
1972, 8, 733.
R. Appel, W. Westerhaus, Angew. Chem. 1980, 92, 578; Angew.
Chem. Int. Ed. Engl. 1980, 19, 556.
J. Mahnke, A. Zanin, W.-W. du Mont, F. Ruthe, P. G. Jones, Z.
Anorg. Allg. Chem. 1998, 624, 1447–1454.
M. Yoshifuji, in: M. Regitz, O. J. Scherer, Multiple Bonds and
Low Coordination in Phosphorus Chemistry, Georg-Thieme Ver-
lag, Stuttgart, 1990, chapter D9, p. 321–337.
Coupling constants for Si–P π-Bonds: C. N. Smit, F. Bickel-
haupt, Organometallics 1987, 6, 1156.
a) Coupling constants for Sn–P π-bonds: C. Couret, J. Escudie,
J. Satgé, J. Am. Chem. Soc. 1985, 107, 8280; b) For Sn–P cou-
pling constants for phosphane SnCl4 complexes, see: J. F. Ma-
lone, B. E. Mann, Inorg. Nucl. Chem. Lett. 1972, 8, 819; A.
Yamasaki, F. Fluck, Z. Anorg. Allg. Chem. 1973, 396, 819.
Data were recorded using Mo-Kα radiation (λ = 0.71073 Å) on an
Oxford Diffraction Xcalibur S diffractometer. An absorption cor-
rection was based on multi-scans. The structure was refined using
the program SHELXL-97 [25]. Hydrogen atoms were included using
rigid methyl groups or a riding model.
[12]
[13]
[14]
[15]
[16]
[17]
[18]
CCDC-777799 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
Acknowledgments
We thank Dr. Alk Dransfeld and Prof. Dr. Manuela Flock (TU
Graz, Austria) for their help with orienting DFT calculations on
compounds 2, and we acknowledge financial support from the
Deutsche Forschungsgemeinschaft (DFG) at an early stage of this
work.
[19]
[20]
[1] A. J. Arduengo III, Acc. Chem. Res. 1999, 32, 913–921; D. Bou-
rissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000,
100, 39–91; M. Driess, H. Grützmacher, Angew. Chem. 1996,
108, 900–929; Angew. Chem. Int. Ed. Engl. 1996, 35, 828–856;
N. Tokitoh, R. Okazaki, Coord. Chem. Rev. 2000, 210, 251–
272; R. West, Acc. Chem. Res. 2000, 33, 704.
[21]
[22]
F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388.
a) J. Escudié, C. Couret, H. Ranaivonjatavo, J. Satgé, J. Jaud,
Phosphorus Sulfur 1983, 17, 221; b) A. H. Cowley, J. E. Kilduff,
4468
www.eurjic.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2010, 4462–4469