7264
J. E. Tellew et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7259–7264
Compound 8d proved to be the best combination of CRF1
Acknowledgments
affinity and metabolic stability; consequently, the individual
enantiomers were prepared following the procedure outlined in
Scheme 4. Although the procedure as illustrated in Scheme 1 is
convenient, the protocol resulted in complete racemization of the
final compound when optically pure amino esters were utilized.
To avoid the troublesome ester hydrolysis step (S)- and (R)-2-ami-
nobutyric acids were substituted for the 2-aminobutyric acid
methyl ester in the addition to intermediate 5. Coupling of the
intermediates (R)-22 and (S)-22 with methyl amidoxime, followed
by cyclization under mildly basic15 conditions, provided final prod-
ucts (R)-8d and (S)-8d in high enantiomeric purity (>99% ee).16
Both enantiomers of 8d proved to be high affinity CRF1 receptor
antagonists with pKi values of 8.2 for (S)-8d and 8.0 for (R)-8d. Both
compounds proved to be metabolically stable (estimated max
F% = 42% and 63%, respectively) and an experimentally (shake
flask) determined log D7.4 of 3.8. The compounds were further
assayed for in vitro suppression of sauvagine-induced ACTH re-
lease in rat anterior pituitary cells11 and unexpectedly (S)-8d was
10-fold more active than its enantiomer with pIC50 values of 7.0
and 6.0, respectively. As a result of the functional activity, com-
pound (S)-8d was evaluated in a 24 h rat pharmacokinetic study
at an oral dose of 10 mg/kg. Compound (S)-8d demonstrated good
oral bioavailability (66%) and good exposure in both plasma
(AUC0–24 = 3130 ng h/mL) and brain (1 h brain/plasma ratio = 1.6).
A 72 h iv (5 mg/kg) study established that (S)-8d had moderate
clearance (14 mL/min kg) and a volume of distribution at steady
state (Vdss = 7.5 L/kg) within our target range. In addition, the hu-
man plasma protein binding for the compound was 94% as deter-
mined by equilibrium dialysis.
We thank Neurocrine and GSK Analytical departments as well a
Neurocrine Preclinical department for analytical measurements
and pharmacokinetic studies.
References and notes
1. Arborelius, L.; Owens, M. J.; Plotsky, P. M.; Nemeroff, C. B. J. Endocrinol. 1999,
160, 1.
2. Grigoriadis, D. E. Expert Opin. Ther. Targets 2005, 9, 651.
3. (a) Gilligan, P. J.; Li, Y.-W. Curr. Opin. Drug Discov. Devel. 2004, 7, 487; (b) Tellew,
J. E.; Luo, Z. Curr. Top. Med. Chem. 2008, 7, 506; (c) Dzierba, C. D.; Hartz, R. A.;
Bronson, J. J. Annu. Rep. Med. Chem. 2008, 43, 3.
4. (a) Holsboer, F.; Ising, M. Eur. J. Pharmacol. 2008, 583, 350; (b) Chen, C.;
Grigoriadis, D. E. Drug Dev. Res. 2005, 65, 216.
5. Ising, M.; Zimmermann, U. S.; Künzel, H. E.; Uhr, M.; Foster, A. C.; Learned-
Coughlin, S. M.; Holsboer, F.; Grigoriadis, D. E. Neuropsychopharmacology 2007,
32, 1941.
6. Binneman, B.; Feltner, D.; Kolluri, S.; Shi, Y.; Qiu, R.; Stiger, T. Am. J. Psychiatry
2008, 165, 617.
7. Coric, V.; Feldman, H. H.; Oren, D. A.; Shekhar, A.; Pultz, J.; Dockens, R. C.; Wu, X.;
Gentile, K. A.; Huang, S.-P.; Emison, E.; Delmonte, T.; D’Souza, B. B.;Zimbroff, D. L.;
Grebb, J. A.; Goddard, A. W.; Stock, E. G. Depress. Anxiety 2010, 27, 417.
8. Chen, C. Curr. Med. Chem. 2006, 13, 1261.
9. Chen, C.; Wilcoxen, K. M.; Huang, C. Q.; Xie, Y.-F.; McCarthy, J. R.; Webb, T. R.;
Zhu, Y. F.; Saunders, J.; Liu, X.-J.; Chen, T.-K.; Bozigian, H.; Grigoriadis, D. E. J.
Med. Chem. 2004, 47, 4787.
10. Calculator Plugins were used for Structure Property Prediction and Calculation,
11. Gilligan, P. J.; Baldauf, C.; Cocuzza, A.; Chidester, D.; Zaczek, R.; Fitzgerald, L.
W.; McElroy, J.; Smith, M. A.; Shen, H.-S. L.; Saye, J.; Christ, D.; Trainor, G.;
Robertson, D. W.; Hartig, P. Bioorg. Med. Chem. 2000, 8, 181.
12. Gross, R. S.; Guo, Z.; Dyck, B.; Coon, T.; Huang, C. Q.; Lowe, R. F.; Marinkovic, D.;
Moorjani, M.; Nelson, J.; Zamani-Kord, S.; Grigoriadis, D. E.; Hoare, S. R. J.;
Crowe, P. D.; Bu, J. H.; Haddach, M.; McCarthy, J.; Saunders, J.; Sullivan, R.;
Chen, T.; Williams, J. P. J. Med. Chem. 2005, 48, 5780.
In summary, a series of novel and potent CRF1 receptor antago-
nists have been synthesized where analogs of 1 have heterocycles
replacing alkyl chains in the top region of the molecule which re-
sulted in analogs with reduced overall lipophilicity. The most
promising compound, (S)-8d (NBI-77860/GSK561679), possesses
a good pharmacokinetic profile and was selected as a candidate
for further preclinical investigation. Results of further preclinical
and clinical studies with this compound will be disclosed in future
publications.
13. Liaw, C. W.; Grigoriadis, D. E.; Lorang, M. T.; De Souza, E. B.; Maki, R. A. Mol.
Endocrinol. 1997, 11, 2048.
14. Hodge, C. N.; Aldrich, P. E.; Wasserman, Z. R.; Fernandez, C. H.; Nemeth, G. A.;
Arvanitis, A.; Cheeseman, R. S.; Chorvat, R. J.; Ciganek, E.; Christos, T. E.; Gilligan,
P. J.; Krenitsky, P.; Scholfield, E.; Strucely, P. J. Med. Chem. 1999, 42, 819.
15. Hamzé, A.; Hernandez, J.-F.; Fulcrand, P.; Martinez, J. J. Org. Chem. 2003, 68,
7316.
16. Enantiomeric excess was determined by normal-phase chiral HPLC using
Chiralcel OD columns with hexane/ethanol or hexane/isopropanol as eluant (in
the presence of diethylamine as an additive in some cases).