Article
Inorganic Chemistry, Vol. 50, No. 5, 2011 2029
interest because of potential applications including storage of
gases such as H2, CO2, and CH4; molecule separations, for
example, vapor phase adsorption and separation of xylene
isomers; and drug delivery.16-31 Functional groups of var-
ious polarities, hydrophilicities, and acidities were recently
introduced through substitution in the framework phenyl
groups, and their effects on pore opening and the host-guest
interactions were reported.32-34
We have reported the synthesis of [VO(bdc)](H2bdc)0.71
(traditionally designated as MIL-477) in the form of large
single crystals.35 After removal of the guest acid molecules by
heating the crystals of [VO(bdc)](H2bdc)0.71 in the air, we
observed that the VO(bdc) structure is sufficiently flexible
to undergo single-crystal-to-single-crystal transformations
upon the adsorption of aniline, acetone, thiophene, and other
molecules enabling the details of the guest structure, frame-
work-guest interactions, and framework deformations to
be determined from single crystal X-ray diffraction data.
Furthermore, we have observed the rapid and highly selective
adsorption of organic sulfur molecules from methane or
octane by VO(bdc), a process relevant to clean fuels.36,37
The details of the crystal structures show the importance of
noncovalent interactions in determining the guest molecule
packing within the nanochannels and are valuable in helping
to understand the adsorption properties. Most recently, Leus
et al. reported remarkable catalytic activity of VO(bdc) in the
epoxidation of cyclohexene.38
We have extended our earlier study to other guest mole-
cules with different shapes and chemical bonding possibili-
ties. In the structural study of the VO(bdc) framework loaded
with different six-ring organic molecules, a twisting deforma-
tion mode accompanied by a cooperative rotation of the
octahedral chains and bending of the bdc ligands has been
observed. This deformation mode is complementary to the
well investigated breathing deformation which corresponds
to a cooperative translation of the octahedral chains. In the
present work, we show that combinations of the twisting and
breathing deformations occur when different molecules are
absorbed into the VO(bdc) framework. Quantitative insights
into these deformations and the remarkable flexibility of the
VO(bdc) framework have been obtained from ab initio
calculations.
(16) Finsy, V.; Kirschhock, C. E. A.; Vedts, G.; Maes, M.; Alaerts, L.; De
Vos, D. E.; Baron, G. V.; Denayer, J. F. M. Chem.;Eur. J. 2009, 15, 7724–
7731.
Experimental Section
(17) Alaerts, L.; Maes, M.; Jacobs, P. A.; Denayer, J. F. M.; De Vos, D. E.
Phys. Chem. Chem. Phys. 2008, 10, 2979–2985.
Crystalline [VO(bdc)](H2bdc)0.71, 1, was synthesized as
previously reported.35 For the adsorption measurements,
red prismatic crystals of 1 were heated in the air to 380 °C
using a 10 °C min-1 heat-up rate to remove H2bdc and to
form VO(bdc), 2. X-ray diffraction measurements on both
powder and single crystalsamples afterheatingconfirmed the
integrity of the structure of VO(bdc). Adsorption experi-
ments were carried out by immersing crystals of 2 in liquid
benzene, 1,4-cyclohexadiene, 1,3-cyclohexadiene, cyclohex-
ene, or cyclohexane in the air at room temperature. After
immersing the VO(bdc) crystals in the corresponding guest
liquid for ∼1 h, a suitable crystal for each intercalation com-
poundwas selectedand sealedina capillaryintheair together
with the guest liquid and mounted on a Bruker Apex-II
diffractometer for X-ray data collection. Structure determi-
nation and refinements were performed using the Bruker
SHELXTL software package.39 Data collection and struc-
ture refinement details are listed in Table 1. Volumes of vari-
ous voids within the structures are calculated using the
(18) Alaerts, L.; Kirshhock, C. E. A.; Maes, M.; van der Veen, M. A.;
Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer,
J. F. M.; De Vos, D. E. Angew. Chem., Int. Ed. 2007, 46, 4293–4297.
ꢀ
(19) Millange, F.; Guillou, N.; Medina, M. E.; Ferey, G.; Carlin-Sinclair,
A.; Golden, K. M.; Walton, R. I. Chem. Mater. 2010, 22, 4237–4245.
(20) Rosenbach, N., Jr.; Ghoufi, A.; Deroche, I.; Llewellyn, P. L.; Devic,
ꢀ
T.; Bourrelly, S.; Serre, C.; Ferey, G.; Maurin, G. Phys. Chem. Chem. Phys.
2010, 12, 6428–6437.
(21) Salles, F.; Kolokolov, D. I.; Jobic, H.; Maurin, G.; Llewellyn, P. L.;
ꢀ
Devic, T.; Serre, C.; Ferey, G. J. Phys. Chem. C 2009, 113, 7802–7812.
(22) Salles, F.; Jobic, H.; Ghoufi, A.; Llewellyn, P. L.; Serre, C.;
ꢀ
Bourrelly, S.; Ferey, G.; Maurin, G. Angew. Chem., Int. Ed. 2009, 48
(8335-8339), S8335/1–S8335/9.
(23) Hamon, L.; Llewellyn, P. L.; Devic, T.; Ghoufi, A.; Clet, G.;
Guillerm, V.; Pirngruber, G. D.; Maurin, G.; Serre, C.; Driver, G.; van
ꢀ
Beek, W.; Jolimaitre, E.; Vimont, A.; Daturi, M.; Ferey, G. J. Am. Chem.
Soc. 2009, 131, 17490–17499.
ꢀ
(24) Hamon, L.; Serre, C.; Devic, T.; Loiseau, T.; Millange, F.; Ferey, G.;
De Weireld, G. J. Am. Chem. Soc. 2009, 131, 8775–8777.
(25) Finsy, V.; Ma, L.; Alaerts, L.; De Vos, D. E.; Baron, G. V.; Denayer,
J. F. M. Microporous Mesoporous Mater. 2009, 120, 221–227.
(26) Finsy, V.; Calero, S.; Garcia-Perez, E.; Merkling, P. J.; Vedts, G.; De
Vos, D. E.; Baron, G. V.; Denayer, J. F. M. Phys. Chem. Chem. Phys. 2009,
11, 3515–3521.
˚
program PLATON and the van der Waals radii: C, 1.70 A;
40
˚
H, 1.20 A; O, 1.52 A; V, 2.13 A.
˚
˚
In order to obtain more quantitative information on the
remarkable flexibility of the VO(bdc) framework revealed
in our crystallographic studies, we carried out ab initio cal-
culations. All energy calculations were performed with the
DFT-based code VASP41-45 using the more recent PAW
potentials46 and the PBE functional.47 An energy cutoff of
(27) Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; Llewellyn, P. L.;
ꢀ
Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F.; Ferey, G. J. Am. Chem.
Soc. 2008, 130, 16926–16932.
(28) Ramsahye, N. A.; Maurin, G.; Bourrelly, S.; Llewellyn, P. L.; Serre,
ꢀ
C.; Loiseau, T.; Devic, T.; Ferey, G. J. Phys. Chem. C 2008, 112, 514–520.
(29) Basu, S.; Maes, M.; Cano-Odena, A.; Alaerts, L.; De Vos, D. E.;
Vankelecom, I. F. J. J. Membr. Sci. 2009, 344, 190–198.
(30) Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.;
(36) Jacobson, A. J.; Liu, L.; Wang, X. Patent WO 2008021194, 2008.
(37) Liu, L.; Wang, X.; Jacobson, A. J. J. Mater. Res. 2009, 24, 1901–
1905.
(38) Leus, K.; Muylaert, I.; Vandichel, M.; Marin Guy, B.; Waroquier,
M.; Van Speybroeck, V.; Van der Voort, P. Chem Commun 2010, 46, 5085–7.
(39) Sheldrick, G. M. SHELXTL; Bruker AXS: Madison, WI, 2005.
(40) Spek, A. L. PLATON; Utrecht University: Utrecht, The Netherlands,
2008.
(41) Kresse, G.; Hafner, J. Phys. Rev. B: Condens. Matter 1993, 47,
558–61.
(42) Kresse, G.; Hafner, J. Phys. Rev. B: Condens. Matter 1994, 49,
14251–69.
(43) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15–50.
(44) Kresse, G.; Furthmueller, J. Phys. Rev. B: Condens. Matter 1996, 54,
11169–11186.
mpi.univie.ac.at/vasp/ (accessed Jan 2011).
ꢀ
Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. J. Am. Chem. Soc. 2008,
130, 6774–6780.
(31) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.;
Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang,
ꢀ
Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur,
P.; Gref, R. Nat. Mater. 2010, 9, 172–178.
(32) Couck, S.; Denayer, J. F. M.; Baron, G. V.; Remy, T.; Gascon, J.;
Kapteijn, F. J. Am. Chem. Soc. 2009, 131, 6326–6327.
(33) Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin,
B.; Heurtaux, D.; Clet, G.; Vimont, A.; Greneche, J.-M.; Le Ouay, B.;
Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi,
ꢀ
M.; Ferey, G. J. Am. Chem. Soc. 2010, 132, 1127–1136.
(34) Couck, S.; Remy, T.; Baron, G. V.; Gascon, J.; Kapteijn, F.;
Denayer, J. F. M. Phys. Chem. Chem. Phys. 2010, 12, 9413–9418.
(35) Wang, X.; Liu, L.; Jacobson, A. J. Angew. Chem., Int. Ed. 2006, 45,
6499–6503.