pubs.acs.org/joc
limited substrate scope, essentially focused on R,β-unsaturated
Organocatalytic Stereoselective Epoxidation of
Trisubstituted Acrylonitriles
ketones as substrates.3 Indeed, only a few protocols are
suitable for the asymmetric epoxidation of R,β-unsaturated
aldehydes,4 cyclic enones,5 R,β-unsaturated esters,6 amides,
and derivatives thereof.7 The lantanoids/BINOLs/tert-butyl8
hydroperoxide (TBHP) and polyleucine/H2O2/NaOH9 sys-
tems are likely among the most versatile protocols showing
wider applicability. Surprisingly, studies have been almost
exclusively restricted on the epoxidation of trans-disubsti-
tuted electron-poor alkenes. Hence, expanding the substrate
scope of the asymmetric nucleophilic epoxidation also to
trisubstituted electron-poor alkenes would be highly desir-
able, even in consideration of the access to versatile inter-
mediates bearing quaternary stereocenters. To the best of
our knowledge, Deng and coauthors10 recently reported the
first example of highly diastereo- and enantioselective epox-
idation of trans-R-carbonyl-β-substitued acrylates mediated
by TADDOL-derived hydroperoxide11 (TADOOH) under
basic conditions (Scheme 1).
Claudia De Fusco, Consiglia Tedesco, and
Alessandra Lattanzi*
ꢀ
Dipartimento di Chimica, Universita di Salerno, Via Ponte
don Melillo, 84084, Fisciano, Italy
Received October 11, 2010
The corresponding epoxides proved to be key compounds
employed for the first asymmetric total synthesis of (-)-plicatic
acid, an agent causing inflammatory and allergic reactions.12
Over the recent years, we developed a simple and convenient
(3) For reviews, see: (a) Porter, M. J.; Skidmore, J. Chem. Commun. 2000,
1215. (b) Nemoto, T.; Ohshima, T.; Shibasaki, M. J. Synth. Org. Chem. Jpn.
2002, 60, 94. (c) Berkessel, A. In Asymmetric Synthesis-The Essentials, 2nd
€
ed.; Christmann, M., Brase, S., Eds.; WILEY-VCH: Weinheim, Germany,
2007; p 185. (d) Lattanzi, A. Curr. Org. Synth. 2008, 5, 117. (e) Dıez, D.;
The first diastereospecific and enantioselective epoxida-
tion of trans-2-aroyl-3-arylacrylonitriles by means of the
commercially available diaryl L-prolinol/tert-butyl hy-
droperoxide system has been developed. These diversely
functionalized epoxides were obtained in excellent yield
(up to 99%), complete diastereoselectivity for the trans-
isomer, and good enantioselectivity (up to 84% ee).
Highly enantioenriched epoxides can be easily obtained
after a single crystallization (ee > 90%).
ꢁ~
Nunez, M. G.; Anton, A. B.; Garcıa, P.; Moro, R. F.; Garrido, N. M.;
Marcos, I. S.; Basabe, P.; Urones, J. G. Curr. Org. Synth. 2008, 5, 186. (f)
ꢁ
ꢁ
Lattanzi, A. In Catalytic Asymmetric Conjugate Reactions; Cordova, A., Ed.;
WILEY-VCH: Weinheim, Germany, 2010; p 351.
ꢁ
(4) (a) Marigo, M.; Franzen, G.; Poulsen, T. B.; Zhuang, W.; Jørgensen,
K. A. J. Am. Chem. Soc. 2005, 127, 6964. (b) Lee, S.; MacMillan, D. W. C.
ꢁ
Tetrahedron 2006, 62, 11413. (c) Zhao, G.-L.; Ibrahem, I.; Sunden, H.;
Cordova, A. Adv. Synth. Catal. 2007, 349, 1210. (d) Wang, X.; List, B.
ꢁ
Angew. Chem., Int. Ed. 2008, 47, 1119. (e) Sparr, C.; Schweizer, W. B.; Senn,
H. M.; Gilmour, R. Angew. Chem., Int. Ed. 2009, 48, 3065. (f) Lifchits, O.;
Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2010, 132, 10227.
(5) Wang, X.; Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2008, 130,
6070.
The asymmetric epoxidation of alkenes is a fundamental
process given the pivotal role of chiral epoxides as targets of
biological and pharmaceutical interest and most of all as
synthetic intermediates amenable to a variety of manipula-
tions of the epoxide ring.1 Several electrophilic and nucleo-
philic chiral metal-based and organocatalytic systems have
been developed to date for the epoxidation of an array of
alkenes.2 In the area of nucleophilic epoxidation of electron-
poor alkenes, numerous catalytic systems are available to
effect this transformation, although most of them have
(6) Kakei, H.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc.
2005, 127, 8962.
(7) (a) Nemoto, T.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2001,
123, 9474. (b) Kinoshita, T.; Okada, S.; Park, S.-R.; Matsunaga, S.;
Shibasaki, M. Angew. Chem., Int. Ed. 2003, 42, 4680. (c) Kakei, H.; Nemoto,
T.; Ohshima, T.; Shibasaki, M. Angew. Chem., Int. Ed. 2004, 43, 317.
(d) Nemoto, T.; Kakei, H.; Gnanadesikan, V.; Tosaki, S.; Ohshima, T.;
Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14544.
(8) For a general review on lantanoids/BINOL catalyzed reactions, see:
Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187. For selected
examples, see: (a) Bougauchi, M.; Watanabe, S.; Arai, T.; Sasai, H.;
Shibasaki, M. J. Am. Chem. Soc. 1997, 119, 2329. (b) Watanabe, S.; Arai,
T.; Sasai, H.; Bougauchi, M.; Shibasaki, M. J. Org. Chem. 1998, 63, 8090. (c)
Chen, R.; Qian, C.; de Vries, J. G. Tetrahedron 2001, 57, 9837. (d) Jayaprakash,
D.; Kobayashi, Y.; Arai, T.; Hu, Q.-S.; Zheng, X.-F.; Pu, L.; Sasai, H. J. Mol.
Catal. A: Chem. 2003, 196, 145. (e) Wang, X.; Shi, L.; Li, M.; Ding, K. Angew.
Chem., Int. Ed. 2005, 44, 6362. (f) Wang, X.; Shi, L.; Li, M.; Ding, K. Angew.
Chem., Int. Ed. 2005, 44, 6362.
(1) For reviews, see: (a) Katsuki, T. Comprehensive Asymmetric Catal-
ysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin,
Germany, 1999; Vol. 2, p 621. (b) Jacobsen, E. N.; Wu, M. H. Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H, Eds.;
Springer: Berlin, Germany, 1999; p 649. (c) Katsuki, T. Curr. Org. Chem.
ꢁ
(9) For selected examples, see: (a) Julia, S.; Masana, J.; Vega, J. C.
Angew. Chem., Int. Ed. 1980, 19, 929. (b) Lasterra-Sanchez, M. E.; Roberts,
€
ꢁ
2001, 5, 663. (d) Adam, W.; Saha-Moller, C. R.; Ganeshpure, P. A. Chem.
Rev. 2001, 101, 3499. (e) Aziridines and Epoxides in Organic Synthesis;
Yudin, A. K., Ed.; WILEY-VCH: Weinheim, Germany, 2006; Chapters
7-9.
(2) (a) Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2024. (b) Xia, Q.-
H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005, 105, 1603.
(c) Wong, O. A.; Shi, Y. In Chiral Ketone and Iminium Catalysts for Olefin
Epoxidation; List, B., Ed.; Topics in Current Chemistry, No. 291; Springer:
Berlin, Germany, 2009.
S. M. J. Chem. Soc., Perkin Trans. 1 1995, 1467. (c) Adger, B. M.; Barkley,
J. V.; Bergeron, S.; Cappi, M. W.; Flowerdew, B. E.; Jackson, M. P.;
MacCague, R.; Nugent, T. C.; Roberts, S. M. J. Chem. Soc., Perkin Trans.
1 1997, 3501. (d) Allen, J. V.; Drauz, K.-H.; Flood, R. W.; Roberts, S. M.;
Skidmore, J. Tetrahedron Lett. 1999, 40, 5417. (e) Kelly, D. R.; Roberts,
S. M. Biopolymers 2006, 84, 74.
(10) Sun, B.-F.; Hong, R.; Kang, Y.-B.; Deng, L. J. Am. Chem. Soc. 2009,
131, 10384.
676 J. Org. Chem. 2011, 76, 676–679
Published on Web 12/22/2010
DOI: 10.1021/jo102020a
r
2010 American Chemical Society