1ꢀRꢀ2ꢀ[4ꢀAminobutaꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ1Hꢀbenzimidazoles
Table 2. (continued)
Russ.Chem.Bull., Int.Ed., Vol. 59, No. 5, May, 2010
1021
Comꢀ
pound
δ (J/Hz)
Н(4)
(d)
Н(5) Н(7)
(m)
NR´
Н(1´)
(d)
Н(2´)
(dd)
Н(3´)
(dd)
Н(4´)
(d)
NR″
2
25
26
27
7.66
(J = 9.5)
8.11—8.12 3.45 (s, Ме)
6.68
7.46
0.88
5.76
(c)
2.77 (s, Me)
2.77 (s, Me)
(J = 13.7)(d, J = 13.7) (s, SiMe);
7.30—7.62
(m, Ph)
7.72
(J = 8.9)
7.99—8.14 5.20 (s, CH2CO)
7.10—7.84 (m, Ph)
6.65
7.42
0.81
5.76
(c)
(J = 13.7)(d, J = 13.7) (s, SiMe);
7.10—7.84
(m, Ph)
7.41
7.42—7.50 3.60 (s, Ме)
6.10
6.60
5.41
6.43
3.18 (m, (СН2)2О);
(J = 8.1)
(J = 13.5) (J = 13.5,
J = 11.6)
(J = 12.0, (J = 12.0) 3.72 (m, (СН2)2N)
J = 11.6)
1ꢀyl]ꢀ1ꢀmethylꢀ (13), 1ꢀmethylꢀ2ꢀ[(1E,3E)ꢀ4ꢀpiperidinoꢀ (14),
2ꢀ[(1E,3E)ꢀ4ꢀNꢀbenzylpiperazinobutaꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ1ꢀmethylꢀ
6ꢀnitroꢀ1Hꢀbenzimidazoles (15); 1ꢀbenzylꢀ2ꢀ[(1E,3E)ꢀ4ꢀ(N,Nꢀ
dimethylamino)butaꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ6ꢀnitroꢀ1Hꢀbenzimidazole
(16); 1ꢀallylꢀ2ꢀ[(1E,3E)ꢀ4ꢀN,Nꢀdimethylaminoꢀ (17), 1ꢀallylꢀ
2ꢀ[(1E,3E)ꢀ4ꢀmorpholinoꢀ (18), 1ꢀallylꢀ2ꢀ[(1E,3E)ꢀ4ꢀpipeꢀ
ridinoꢀ (19), 1ꢀallylꢀ2ꢀ[(1E,3E)ꢀ4ꢀNꢀbenzylpiperazinoꢀ (20),
1ꢀallylꢀ2ꢀ[(1E,3E)ꢀ4ꢀN,Nꢀdifurfurylaminobutaꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ
6ꢀnitroꢀ1Hꢀbenzimidazoles (21); 1ꢀbromoethylꢀ2ꢀ[(1E,3E)ꢀ
4ꢀN,Nꢀdimethylaminoꢀ (22), 1ꢀbromoethylꢀ2ꢀ[(1E,3E)ꢀ
4ꢀmorpholinoꢀ1ꢀbromoethylꢀ2ꢀ[(1E,3E)ꢀ4ꢀbutaꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ
6ꢀnitroꢀ1Hꢀbenzimidazoles (23); 1ꢀ(3ꢀethoxycarbonylpropylꢀ1)ꢀ
2ꢀ[(1E,3E)ꢀ4ꢀmorpholinobutaꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ6ꢀnitroꢀ1Hꢀbenzꢀ
imidazole (24). The yields, elemental analysis results, and
physicoꢀchemical characteristics of aminodienes 10—24 are
(3E)ꢀ4ꢀ(1ꢀMethylꢀ6ꢀnitroꢀ1Hꢀbenzimidazolꢀ2ꢀyl)butꢀ3ꢀenal
(28). Sodium nitrite (0.25 g, 3.62 mmol) was added in five
portions over 1.5 h to a stirred solution of diene 12 (0.5 g,
1.59 mmol) in ~15% aq. hydrochloric acid (6 mL) at 20 °C.
After the addition was over, the mixture was stirred at room
temperature for another 1 h. Then the reaction mixture was
poured into water (10 mL) and neutralized with aq. ammonia
to pH ~7. A precipitate formed was filtered off and recrystallized
from AcOEt to obtain aldehyde 28 (0.15 g, 35%), pale yellow
crystals with m.p. 214—216 °C. IR, ν/cm–1: 1680 (C=O).
Found (%): C, 58.65; H, 4.10; N, 17.03. C12H11N3O3. Calculꢀ
ated (%): C, 58.77; H, 4.52; N, 17.13. 1H NMR (CDCl3), δ:
3.73 (s, 3 H, NMe); 3.95 (m, 2 H, CH2CHO); 6.71 (d, 1 H,
H(4), J = 14.5 Hz); 7.10 (m, 1 H, H(3)); 7.60 (d, 1 H, H(4´),
J = 8.7 Hz); 8.10—8.15 (m, 2 H, H(5´), H(7´)); 9.80 (s, 1 H,
CHO). MS, m/z: 245 [M]+.
1
given in Table 1, the H NMR spectral data, in Table 2.
2ꢀ[(1E,3E)ꢀ4ꢀ(N,NꢀDimethylamino)ꢀ2ꢀmethyldiphenylsilylꢀ
butaꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ1ꢀmethylꢀ6ꢀnitroꢀ1Hꢀbenzimidazole (25) and
2ꢀ[(1E,3E)ꢀ4ꢀ(N,Nꢀdimethylamino)ꢀ2ꢀmethyldiphenylsilylbutaꢀ
1,3ꢀdienꢀ1ꢀyl]ꢀ6ꢀnitroꢀ1ꢀphenacylꢀ1Hꢀbenzimidazole (26).
A 30% aq. dimethylamine (0.5 mL) was added to a solution of
salts 8 or 9 (0.36 mmol) in acetonitrile (10 mL) at 20 °C. After
1 h, a precipitate was filtered off, washed with water, dried in
air, and recrystallized from AcOEt—hexane solvent mixture
to obtain silylꢀsubstituted azadienes 25 and 26. The yields,
elemental analysis results, and physicoꢀchemical characteristics
of organosilicon derivatives 25 and 26 are given in Table 1,
1H NMR spectral data, in Table 2.
4aꢀ[(1E,3Z,5E)ꢀ4,5ꢀDi(methoxycarbonyl)ꢀ6ꢀdimethylaminoꢀ
hexaꢀ1,3,5ꢀtrienꢀ1ꢀyl]ꢀ1,2,3,4ꢀtetra(methoxycarbonyl)ꢀ
5ꢀmethylꢀ7ꢀnitroꢀ4a,5ꢀdihydropyrido[1,2ꢀa]benzimidazole (29).
A mixture of 1,3ꢀdiene (10) (0.6 g, 2.2 mmol) and DMAD (3 g,
21.1 mmol) was refluxed in dichloromethane (20 mL) for 3 h
(TLC monitoring). After evaporation of the solvent, the residue
was subjected to chromatography on a column with SiO2 (eluent:
AcOEt—hexane, 1 : 1) to obtain compound 29 (0.25 g). Recrysꢀ
tallization from ethyl acetate gave brown crystals, the yield was
17%, m.p. 116—118 °C. Found (%): C, 55.38; H, 4.67; N, 8.00.
C32H34N4O14. Calculated (%): C, 55.01; H, 4.91; N, 8.02.
1H NMR (CDCl3), δ: 2.86 (s, 6 H, NMe2); 3.06 (s, 3 H,
N(5)Me); 3.62, 3.72, 3.79, 3.80, 3.83, 4.04 (all s, 3 H each,
OMe); 5.65 (d, 1 H, H(1´), J = 15.2 Hz); 6.14 (d, 1 H, H(3´),
J = 11.2 Hz); 6.63 (d, 1 H, H(9), J = 8.8 Hz); 7.26 (dd, 1 H,
H(2´), J = 11.2 Hz, J = 15.2 Hz); 7.36 (d, 1 H, H(6),
J = 2.0 Hz); 7.49 (s, 1 H, H(6´)); 7.68 (dd, 1 H, H(8), J = 8.8 Hz,
J = 2.0 Hz). 13C NMR (CDCl3), δ: 33.5, 43.2 (2 C), 51.0, 51.8,
52.2, 52.5, 52.6, 53.6, 86.8, 96.3, 103.2, 108.2, 108.9, 116.4,
118.0, 127.0, 130.9, 131.9, 132.5, 134.8, 135.4, 137.0, 143.0,
145.0, 151.0, 162.6, 163.0, 163.4, 166.0, 167.7, 169.0. MS, m/z:
698 [M]+.
6ꢀAminoꢀ1ꢀmethylꢀ2ꢀ[(1E,3E)ꢀ4ꢀmorpholinoꢀ1,3ꢀdienꢀ1ꢀyl]ꢀ
1Hꢀbenzimidazole (27). Raney nickel (50 mg) was added in
portions over 15 min to a stirred solution of diene 12 (0.5 g,
1.8 mmol) and hydrazine hydrate (2 mL) in ethanol (10 mL).
Then the reaction mixture was heated for 3 h at ~30 °C (TLC
monitoring). The catalyst was filtered off. The alcohol was
evaporated in vacuo, water (10 mL) was added to the residue,
followed by extraction with chloroform (3×20 mL). The extract
was dried with MgSO4. After evaporation of chloroform, the
residue was recrystallized from AcOEt to obtain diene 27
(90 mg, 20%), red crystals, m.p. 184—186 °C (with decomp.).
Found (%): C, 67.50; H, 6.84; N, 19.91. C16H20N4O. Calculꢀ
5ꢀBenzylꢀ4aꢀ[(1E,3Z,5E)ꢀ4,5ꢀdi(methoxycarbonyl)ꢀ
6ꢀdimethylaminohexaꢀ1,3,5ꢀtrienꢀ1ꢀyl]ꢀ1,2,3,4ꢀtetra(methoxyꢀ
carbonyl)ꢀ7ꢀnitroꢀ4a,5ꢀdihydropyrido[1,2ꢀa]benzimidazole (30).
Compound 30 (60 mg) was obtained similarly to the synthesis
1
ated (%): C, 67.58; H, 7.09; N, 19.70. H NMR data are given
in Table 2. MS, m/z: 284 [M]+.