R. Rosseto, J. Hajdu / Chemistry and Physics of Lipids 163 (2010) 110–116
115
50 MHz) ı 14.08, 22.64, 24.77, 29.10, 29.27, 29.31, 29.47, 29.66,
31.87, 33.95, 42.73, 45.38, 54.38, 59.65, 62.33, 64.06, 66.21, 68.40,
69.41, 69.99, 70.67, 71.50, 115.23, 119.41, 123.21, 128.26, 128.78,
129.65, 129.94, 135.59, 151.64, 170.24, 173.38. 31P NMR (CDCl3,
160 MHz, pyrophosphate ref. ext.) ı −1.72. Rf (CHCl3/MeOH/H2O
65:25:4) 0.40. Anal. Calcd for C42H72N3O12PS·CHCl3·C6H6: C, 54.92;
H, 7.43; N, 3.93; Found: C, 55.27; H, 7.71; N, 3.83. MS MH+
C42H72N3O12PSH Calcd: 874.4667, Found: 874.4602. [␣]D20 + 5.7◦
(c 1.04, CHCl3/MeOH 4:1).
Feng, L., Manabe, K., Shope, J.C., Widmer, S., DeWald, D.B., Prestwich, G.D., 2002.
A real-time fluorogenic phospholipase A2 assay for biochemical and cellular
activity measurements. Chem. Biol. 9, 795–803.
Fuentes, L., Hernandez, M., Nieto, M.L., Crespo, M.S., 2002. Biological effects of a
group IIA secreted phospholipase A2. FEBS Lett. 531, 7–11.
Funk, C.D., 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology.
Science 294, 1871–1875.
Gasparini, L., Ongini, E., Wenk, G., 2004. Non-steroidal anti-inflammatory drugs
(NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neu-
rochem. 91, 521–536.
Graff, J.R., Konicek, B.W., Deddens, J.A., Chedid, M., Hurst, B.M., Colligan, B., Neubaer,
B.L., Carter, H.W., Carter, J.H., 2001. Expression of IIa secretory phospholipase A2
increases with prostate tumor grade. Clin. Cancer Res. 7, 3857–3861.
Grogan, M.J., Kaizuka, Y., Conrad, R.M., Groves, J.T., Bertozzi, C.R., 2005. Synthesis
of lipidated green fluorescent protein and its incorporation in supported lipid
bilayers. J. Am. Chem. Soc. 127, 14383–14387.
3.7. Enzymatic hydrolysis of the synthetic phosphatidylcholine
analogues
Harris, M.J., Chess, R.B., 2003. Effect of PEGylation on pharmaceuticals. Nat. Rev. Drug
Discov. 2, 214–221.
Juillerat-Jeanneret, L., Schmitt, F., 2007. Chemical modification of therapeutic drugs
or drug vector systems to achieve targeted therapy: looking for the grail. Med.
Res. Rev. 27, 574–590.
Kennedy, B.P., Soravia, C., Moffat, J., Xia, I., Hiruki, T., Collins, S., Gallinger, S., Bapat,
B., 1998. Overexpression of nonpancreatic secretory group II PLA2 messenger
RNA and protein in colorectal adenomas from familial adenomatous polyposis
patients. Cancer Res. 58, 500–503.
Khuseyinova, N., Imhof, A., Rothenbacher, D., Trischler, G., Kuelb, S., Scharnagl, H.,
Maerz, W., Brenner, H., Koenig, W., 2005. Association between Lp-PLA2 and coro-
nary artery disease: focus on its relationship with lipoproteins and markers of
inflammation and hemostasis. Atherosclerosis 182, 181–188.
Kimura-Matsumoto, M., Ishikawa, Y., Komiyama, K., Tsurata, T., Murakami, M.,
Masuda, S., Akasaka, Y., Ito, K., Ishiguro, S., Ishii, T., 2008. Expression of secretory
phospholipase A2’s in human atherosclerosis development. Atherosclerosis 196,
81–91.
In a typical experiment, to a sample of phosphatidylcholine 9
(5.0 mg, 5 mol) was added a solution of 4.1 mL of 0.05 M Tris
(pH 8.5) containing 10 mM Triton X-100 and 50 mM CaCl2. The
mixture was vortexed thoroughly, followed by incubation of the
resulting dispersion at 40 ◦C in a water bath for 10 min. The
mixture was then once again vortexed and used for the phos-
pholipase assay directly. The reaction was initiated by addition of
bee-venom phospholipase A2 (8 g in 45 L buffer). The reaction
was run at 40 ◦C for 60 min using a constant temperature water
bath, and formation of the products was analyzed by thin layer
chromatography. The compounds were visualized on the silica
gel plates by UV-absorption, iodine adsorption, and molybdic acid
spray. TLC analysis (chloroform/methanol/water 65:25:4) showed
complete hydrolysis of phosphatidylcholine 9 (Rf 0.56) yielding
1-palmitoyl-2-lysophosphatidylcholine 7 (Rf 0.17) and the 3,6,9-
trioxaundecanylamide of indomethacin (Rf 0.90) both identified
by respective standards. Under similar assay conditions phos-
phatidylcholines 10, 12, 13 were also completely hydrolyzed by
the enzyme.
Klegeris, A., McGeer, P.L., 2005. Non-steroidal anti-inflammatory drugs (NSAIDs) and
other anti-inflammatory agents in the treatment of neurodegenerative disease.
Curr. Alzheimer Res. 2, 355–365.
Kuipers, O.P., Dekker, N., Verheij, H.M., DeHaas, G.H., 1990. Activities of native and
tyrosine-69 mutant phospholipase A2 on phospholipid analogues. A reevalua-
tion of minimal substrate requirements. Biochemistry 29, 6094–6102.
Malolanarasimhan, K., Kedei, N., Sigano, D., Kelley, J.A., Lai, C.C., Lewin, N.E., Surawski,
R.J., Pavlyukovets, V.A., Garfield, S.H., Wincovitch, S., Blumberg, P.M., Marquez,
V.E., 2007. Conformationally constrained analogues of diacylglycerol (DAG). 27.
Modulation of membrane translocation of protein kinase C (PKC) isozymes ␣ and
␦ by diacylglycerol lactones (DAG-lactones) containing rigid-rod acyl groups. J.
Med. Chem. 50, 962–978.
Acknowledgment
Marcus, Y., Sasson, K., Fridkin, M., Shechter, Y., 2008. Turning low molecular weight
drugs into prolonged acting prodrugs by reversible pegylation: a study with
gentanamicin. J. Med. Chem. 51, 4300–4305.
Marsac, Y., Cramer, J., Olschewsky, D., Alexandrov, K., Becker, C.F.W., 2006. Site-
specific attachment of polyethylene glycol-like oligomers to proteins and
peptides. Bioconjugate Chem. 17, 1492–1498.
Menschikowski, M., Hagelgans, A., Gussakovski, E., Kostka, H., Paley, E.L., Siegert,
G., 2008. Differential expression of phospholipase A2 in normal and malignant
prostate cell lines: regulation by cytokines, cell signaling pathways, and epigenic
mechanisms. Neoplasia 10, 279–286.
Mounier, C.M., Wendum, D., Greenspan, E., Flejou, J.-F., Rosenberg, D.W., Lambeau,
G., 2008. Distinct expression of the full set of secreted phospholipase A2 in
human colorectal adenocarcinomas: sPLA2-III as a biomarker candidate. Br. J.
Cancer 98, 587–595.
Nevalainen, T.J., Haapamaki, M.M., Gronroos, J.M., 2000. Roles of secretory phospho-
lipase A2 in inflammatory diseases and trauma. Biochim. Biophys. Acta 1488,
83–90.
Nevalainen, T.J., Graham, C.G., Scott, K.F., 2008. Antibacterial actions of secreted
phospholipase A2. Biochim. Biophys. Acta 1781, 1–9.
Nijmeijer, R., Meuwissen, M., Krijnen, P.A.J., Van Der Wal, A., Piek, J.J., Visser, C.A.,
Hack, C.E., Niessen, H.W.M., 2008. Secretory type II phospholipase A2 in culprit
coronary lesions is associated with myocardial infraction. Eur. J. Clin. Invest. 38,
205–210.
Prescott, S.M., Zimmerman, G.A., Stafforini, D.M., McIntire, T.M., 2000. Platelet-
activating factor and related lipid mediators. Annu. Rev. Biochem. 69, 419–
445.
We are grateful to the National Institutes of Health, grant 2S06
GM/HD48680 for financial support.
References
Abe, T., Sakamoto, K., Kamahara, H., Kuwahara, N., Ogawa, N., 1997. Group II phos-
pholipase A2 is increased in peritoneal and pleural effusions in patient with
various types of cancer. Int. J. Cancer 74, 245–250.
Blobaum, A.L., Marnett, L.J., 2007. Structural and functional basis of cyclooxygenase
inhibition. J. Med. Chem. 50, 1425–1441.
Bostrom, M.A., Boyanovski, B.B., Jordan, C.T., Wadsworth, M.P., Taatjes, D.J., DeBeer,
F.C., Webb, N.R., 2007. Group V secretory phospholipase A2 promotes atheroscle-
rosis: evidence from genetically altered mice. Atheroscler. Thromb. Vasc. Biol.
27, 600–606.
Bowen, M.E., Monguchi, Y., Sankaranarayanan, R., Vagner, J., Begay, L.J., Xu, L., Bhu-
masamudram, J., Hruby, V.J., Gillies, R.J., Marsh, E.A., 2007. Design, synthesis and
validation of a branched, flexible linker for bioactive peptides. J. Org. Chem. 72,
1675–1680.
Boyanovski, B.B., Webb, N.R., 2009. Biology of secretory phospholipase A2. Cardio-
vasc. Drugs Ther. 23, 61–72.
Burke, J.L., Dennis, E.A., 2009a. Phospholipase A2 biochemistry. Cardiovasc. Drugs
Ther. 23, 49–59.
Burke, J.E., Dennis, E.A., 2009b. Phospholipase A2 structure/function, mechanism and
signaling. J. Lipid Res. 50, 5237–5242.
Chen, T., Wong, K.F., Fenske, D.B., Palmer, L.R., Cullis, P.R., 2000. Fluorescent-labeled
poly(ethylene glycol) lipid conjugates with distal cationic headgroups. Biocon-
jugate Chem. 11, 433–437.
Prusakiewicz, J.J., Felts, A.S., Mackenzie, B.S., Marnett, L.J., 2004. Molecular basis of
the time-dependent inhibition of cyclooxygenases by indomethacin. Biochem-
istry 43, 15439–15445.
Rivera, R., Chun, J., 2008. Biological effects of lysophospholipids. Rev. Physiol.
Biochem. Pharmacol. 160, 25–46.
Roodsari, F.S., Wu, D., Pum, G.S., Hajdu, J., 1999. A new approach to the synthesis
of phospholipids. The use of l-glyceric acid for preparation of diacylglycerols,
phosphatidylcholines and related derivatives. J. Org. Chem. 64, 7727–7737.
Dahan, A., Hoffman, A., 2007. Mode of administration-dependent brain uptake of
indomethacin: sustained systemic input increases brain influx. ASPET Drug
Metab. Dispos. 35, 321–324.
Davidsen, J., Jorgensen, K., Andersen, T.L., Mouritsen, O.G., 2003. Secreted phospho-
lipase A2 as a new enzymatic trigger mechanism for localized liposomal drug
release and absorption in diseased tissue. Biochim. Biophys. Acta 1609, 95–101.
Dong, O., Patel, M., Scott, K.F., Graham, G.G., Russel, P.J., Sved, P., 2006. Oncogenic
action of phospholipase A2 in prostate cancer. Cancer Lett. 240, 9–16.
Felts, A.S., Ji, C., Stafford, J.B., Crews, b.C., Kingsley, P.J., Rouzer, C.A., Washington,
M.K., Subbaramaiah, K., Siegel, B.S., Young, S.M., Dannenberg, A.J., Marnett,
L.J., 2007. Desmethyl derivatives of indomethacin and sulindac as probes for
cyclooxygenase-dependent biology. ACS Chem. Biol. 2, 479–483.
Rosseto, R., Hajdu, J., 2005.
A rapid and efficient method for migration-free
acylation of lysophospholipids: synthesis of phosphatidylcholines with sn-2-
chain-terminal reporter groups. Tetrahedron Lett. 46, 2941–2944.
Rouault, M., LeCalvez, C., Boilard, E., Surrel, F., Singer, A., Ghomashchi, F., Bezzine, S.,
Scarzello, S., Bollinger, J., Gelb, M.H., 2007. Recombinant production and proper-
ties of binding of the full set of mouse secreted phospholipase A2 to the mouse
M-type receptor. Biochemistry 46, 1647–1662.