established a series of sequential reactions wherein an allene
intermediate, generated in situ, underwent subsequent processes
under mild conditions, providing an efficient synthesis of
structurally complex polycycles.10-12 In our continuous efforts
to explore mild and efficient methodologies for the synthesis
of heterocyclic compounds promoted by transition-metal
catalysts,13 we initially expected that reaction of diyne 1a
with imidoyl chloride 2a via Sonogashira coupling reaction
could afford the alkynyl imine 4a.14 To our delight, more
valuable 2-azaanthracene 3a was obtained rather than a
simple coupling product (Scheme 1). Herein, we wish to
Table 1. Optimization of the Reaction Conditions Base on the
Synthesis of 3a from 1a and 2aa
yield of
entry
solvent
base
Et3N
Et3N
Et3N
Et3N
Et3N
temp
time (h)
3a(%)
1
2
3
4
5
6
7
8
9
10
Et3N
THF
CH2Cl2
CH3CN
toluene
THF
THF
THF
THF
THF
rt
rt
rt
rt
rt
rt
rt
rt
10
10
10
10
10
10
10
10
7
62
74
51
57
43
0
Scheme 1
Et2NH
pyridine
0
b
K2CO3
35
64
70
Et3N
i-Pr2NEt
60 °C
rt
10
a Unless otherwise specified, the reaction was carried out using 1 (0.5
mmol), 2 (0.6 mmol), Pd(PPh3)2Cl2 (0.025 mmol), CuI (0.025 mmol), and
base (1 mL) in solvent (3 mL). b 1.5 mmol of K2CO3 were added.
report this convenient synthetic approach to substituted
2-azaanthracenes by utilizing a Pd-catalyzed tandem process
via an allene intermediate.
disfavored (entries 6, 7), indicating that the reaction was
sensitive to the type of base. When the reaction was run at 60
°C, the product 3a was obtained in lower yield (entry 9). Thus,
we chose the following reaction conditions as optimum for all
subsequent cyclizations: 0.5 mmol of 1, 0.6 mmol of 2, 0.025
mmol of Pd(PPh3)2Cl2, and 0.025 mmol of CuI in Et3N/THF
(v/v 1:3) were stirred at room temperature for 10 h.
With the optimized conditions in hand, the scope of this
Pd-catalyzed domino reaction was further investigated, and
the results are summarized in Table 2.
Our preliminary studies focused on the reaction of diyne 1a
with imidoyl chloride 2a in the presence of 5 mol % of
Pd(PPh3)2Cl2 and 5 mol % of CuI in Et3N at room temperature.
The 2-azaanthracene product 3a was isolated in 62% yield after
10 h (Table 1, entry 1). Further studies showed that a 1:3
combination of Et3N and THF as solvent was appropriate. Other
common solvents such as CH2Cl2, CH3CN, and toluene were
effective as well, although lower yields were obtained (entries
2-5). The effect of the base was also investigated. An inorganic
base, e.g., K2CO3 (entry 8), could also be applied to the reaction,
while secondary amine diethylamine and pyridine were totally
Table 2. Synthesis of 2-Azaanthracenes 3a
(8) (a) Ma, S. Chem. ReV. 2005, 105, 2829. (b) Ma, S. Acc. Chem. Res.
2003, 36, 701. (c) Ma, S. Acc. Chem. Res. 2009, 42, 1679. (d) Ma, S. Eur.
J. Org. Chem. 2004, 1175. (e) Ma, S. Aldrich. Acta. 2007, 40, 91. (f)
Marshall, J. A. Chem. ReV. 1996, 96, 31. (g) Yamamoto, Y.; Radhakrishnan,
U. Chem. Soc. ReV. 1999, 28, 199. (h) Zimmer, R.; Dinesh, C. U.; Nandanan,
E.; Khan, F. A. Chem. ReV. 2000, 100, 3067. (i) Marshall, J. Chem. ReV.
2000, 100, 3163
.
(9) (a) Braun, R. U.; Ansorge, M.; Mu¨ller, T. J. J. Chem.sEur. J. 2006,
12, 9081. (b) Braun, R. U.; Zeitler, K.; Mu¨ller, T. J. J. Org. Lett. 2001, 3,
3297. (c) D’Souza, D. M.; Kiel, A.; Herten, D. P.; Mu¨ller, T. J. J.
Chem.sEur. J. 2008, 14, 529. (d) Braun, R. U.; Zeitler, K.; Mu¨ller, T. J. J.
Org. Lett. 2000, 2, 4181. (e) D’Souza, D. M.; Rominger, F.; Mu¨ller, T. J. J.
Angew. Chem., Int. Ed. 2005, 44, 153. (f) D’Souza, D. M.; Rominger, F.;
substrate
yield of
2
entry
1
R1
R2
R3
3 (%)
1
1a Ph
2a Ph
Ph
Ph
74 (3a)
77 (3b)
81 (3c)
79 (3d)
70 (3e)
83 (3f)
75 (3g)
52 (3h)
59 (3i)
Mu¨ller, T. J. J. Chem. Commun. 2006, 4096
.
2
3
4
5
1b 4-MeOC6H4 2a Ph
1c n-Hex 2b Ph
1d cyclopropyl 2b Ph
1a Ph 2b Ph
1d cyclopropyl 2c 4-MeC6H4
(10) (a) Shen, R.; Huang, X. Org. Lett. 2008, 10, 3283. (b) Shen, R.;
Huang, X.; Chen, L. AdV. Synth. Catal. 2008, 350, 2865. (c) Shen, R.; Zhu,
S.; Huang, X. J. Org. Chem. 2009, 74, 4118. (d) Huang, X.; Zhu, S.; Shen,
R. AdV. Synth. Catal. 2009, 351, 3118. (e) Shen, R.; Chen, L.; Huang, X.
AdV. Synth. Catal. 2009, 351, 2833. (f) Sha, F.; Huang, X. Angew. Chem.,
4-MeC6H4
4-MeC6H4
4-MeC6H4
Ph
6
Int. Ed. 2009, 48, 3458
.
(11) (a) Zhou, H.; Zhu, D.; Xie, Y.; Huang, H.; Wang, K. J. Org. Chem.
2010, 75, 2706. (b) Zhou, H.; Xie, Y.; Ren, L.; Su, R. Org. Lett. 2010, 12,
356. (c) Zhou, H.; Xing, Y.; Yao, J.; Chen, J. Org. Lett. 2010, 12, 3674.
(d) Zhou, H.; Zhu, D.; Xing, Y.; Huang, H. AdV. Synth. Catal. 2010, 352,
7
8
9
1d cyclopropyl 2d 4-MeOC6H4 Ph
1d cyclopropyl 2e 2-ClC6H4 Ph
1d cyclopropyl 2f 3-NO2C6H4 Ph
10
1c n-Hex
2g Ph
2,4-Cl2C6H3 61 (3j)
vinyl 69 (3k)
2127. (e) Xu, G.; Chen, K.; Zhou, H. Tetrahedron Lett. 2010, 51, 6240
(12) Gao, G. L.; Niu, Y. N.; Yan, Z. Y.; Wang, H. L.; Wang, G. W.;
Shaukat, A.; Liang, Y. M. J. Org. Chem. 2010, 75, 1305
.
11
1c n-Hex
2h Ph
.
a Unless otherwise specified, the reaction was carried out using 1 (0.5
mmol), 2 (0.6 mmol), Pd(PPh3)2Cl2 (0.025 mmol), CuI (0. 025 mmol), and
Et3N (1 mL) in THF (3 mL) at room temperature for 10 h.
(13) (a) Cao, J.; Huang, X. Org. Lett. 2010, 12, 5048. (b) Cao, J.; Huang,
X. J. Comb. Chem. 2008, 10, 526. (c) Cao, J.; Huang, X. J. Comb. Chem.
2010, 12, 1.
(14) Lin, S. Y.; Sheng, H. Y.; Huang, Y. Z. Synthesis 1991, 235.
Org. Lett., Vol. 13, No. 3, 2011
479