8 (a) D. B. Berkowitz, S. Choi and J.-H. Maeng, J. Org. Chem., 2000,
65, 847–860; (b) D. B. Berkowitz, R. E. Hartung and S. Choi,
Tetrahedron: Asymmetry, 1999, 10, 4513–4520; (c) D. B. Berkowitz,
J.-H. Maeng, A. H. Dantzig, R. L. Shepard and B. H. Norman,
J. Am. Chem. Soc., 1996, 118, 9426–9427; (d) D. B. Berkowitz and
J.-H. Maeng, Tetrahedron: Asymmetry, 1996, 7, 1577–1580;
(e) D. B. Berkowitz, J. A. Pumphrey and Q. Shen, Tetrahedron
Lett., 1994, 35, 8743–8746.
9 In situ enzymatic screening: (a) S. Dey, D. R. Powell, C. Hu and
D. B. Berkowitz, Angew. Chem., Int. Ed., 2007, 46, 7010–7014;
(b) S. Dey, K. R. Karukurichi, W. Shen and D. B. Berkowitz,
J. Am. Chem. Soc., 2005, 127, 8610–8611; (c) D. B. Berkowitz,
W. Shen and G. Maiti, Tetrahedron: Asymmetry, 2004, 15,
2845–2851; (d) D. B. Berkowitz and G. Maiti, Org. Lett., 2004, 6,
2661–2664; (e) D. B. Berkowitz, M. Bose and S. Choi, Angew.
Chem., Int. Ed., 2002, 41, 1603–1607.
Fig. 6 Efficient DYRKR entry into the side chain for taxoid
anti-cancer drugs, including Taxol and Taxotere.
taxoid chemotherapeutics. In the event, CaADH performed
exceptionally, delivering the desired a-chloro-b-hydroxy ester,
14, with proper relative (95% de) and absolute stereochemistry
(99% ee) under DYRKR conditions (Fig. 6). Pleasingly, this level
of stereochemical control was maintained on a gram scale.
D-Glucose serves as a biorenewable reductant regenerating
NADPH under the aegis of GDH from T. acidophilum. In light
of these results, it will be of interest to further mine the genome of
this solventogentic bacterium and further explore the potential of
this Clostridium acetobutylicum ADH.
10 S. Broussy, R. W. Cheloha and D. B. Berkowitz, Org. Lett., 2009,
11, 305–308.
11 J. A. Friest, Y. Maezato, S. Broussy, P. Blum and D. B. Berkowitz,
J. Am. Chem. Soc., 2010, 132, 5930–5931.
12 S. Schaffer, N. Isci, B. Zickner and P. Durre, Electrophoresis, 2002,
23, 110–121.
13 (a) J. Y. Lee, Y.-S. Jang, J. Lee, E. T. Papoutsakis and S. Y. Lee,
Biotechnol. J., 2009, 4, 1432–1440; (b) O. V. Berezina, A. Brandt,
S. Yarotsky, W. H. Schwarz and V. V. Zverlov, Syst. Appl. Microbiol.,
2009, 32, 449–459; (c) E. Cornillot, R. V. Nair, E. T. Papoutsakis and
P. Soucaille, J. Bacteriol., 1997, 179, 5442–5447.
14 (a) O. V. Berezina, N. V. Zakharova, A. Brandt, S. V. Yarotsky,
W. H. Schwarz and V. V. Zverlov, Appl. Microbiol. Biotechnol.,
2010, 87, 635–646; (b) M. Inui, M. Suda, S. Kimura, K. Yasuda,
H. Suzuki, H. Toda, S. Yamamoto, S. Okino, N. Suzuki and
H. Yukawa, Appl. Microbiol. Biotechnol., 2008, 77, 1305–1316.
15 E. J. Steen, R. Chan, N. Prasad, S. Myers, C. J. Petzold, A. Redding,
M. Ouellet and J. D. Keasling, Microb. Cell Fact., 2008, 7, 36.
16 E. M. Green, M. S. Kalil, P. Williams and G. M. Stephens,
Biotechnol. Tech., 1994, 8, 733–738.
This work was supported by the National Science
Foundation (CHE-0911732) and the NCESR. R.W.C. thanks
the Am. Chem. Soc. for a SURF Fellowship. We thank the NSF
(CHE-0091975, MRI-0079750) and NIH (SIG-1-510-RR-
06307) for NMR, and the NIH (RR016544) for lab renovation.
17 J. Nolling, G. Breton, M. V. Omelchenko, K. S. Makarova and
Q. Zeng, et al., J. Bacteriol., 2001, 183, 4823–4838.
18 H. Yamamoto, A. Matsuyama and Y. Kobayashi, Appl. Microbiol.
Biotechnol., 2003, 61, 133–139.
19 R. W. Welch, F. B. Rudolph and E. T. Papoutsakis, Arch. Biochem.
Biophys., 1989, 273, 309–318.
20 R. Kerkhoven, F. H. J. van Enckevort, J. Boekhorst, D. Molenaar
and R. J. Siezen, Bioinformatics, 2004, 20, 1812–1814.
21 J. Guo, X. Mu, C. Zheng and Y. Xu, J. Chem. Technol. Biotechnol.,
2009, 84, 1787–1792.
22 D. Zhu, H. T. Malik and L. Hua, Tetrahedron: Asymmetry, 2006,
17, 3010–3014.
23 C. D. F. Milagre, H. M. S. Milagre, P. J. S. Moran and J. A. R.
Rodrigues, J. Org. Chem., 2010, 75, 1410–1418.
24 C. Forzato, R. Gandolfi, F. Molinari, P. Nitti, G. Pitacco and
E. Valentin, Tetrahedron: Asymmetry, 2001, 12, 1039–1046.
25 (a) L. Qiu, F. Y. Kwong, J. Wu, W. H. Lam, S. Chan, W.-Y. Yu,
Y.-M. Li, R. Guo, Z. Zhou and A. S. C. Chan, J. Am. Chem. Soc.,
2006, 128, 5955–65; (b) R. Noyori and H. Takaya, Acc. Chem. Res.,
1990, 23, 345.
26 R. W. Feenstra, E. H. M. Stokkingreef, R. J. F. Nivard and H. C. J.
Ottenheijm, Tetrahedron Lett., 1987, 28, 1215–1218.
27 A. V. R. Rao, M. K. Gurjar, B. R. Nallaganchu and A. Bhandari,
Tetrahedron Lett., 1993, 34, 7085–7088.
28 H. U. Stilz, W. Guba, B. Jablonka, M. Just, O. Klingler, W. Koenig,
V. Wehner and G. Zoller, J. Med. Chem., 2001, 44, 1158–1176.
29 D. F. C. Moffat, S. Pintat and S. Davies, WO 2009060160, Chr
Ther. Ltd, 2009, 71pp.
30 (a) S. H. Choi, I. A. Guzei, L. C. Spencer and S. H. Gellman, J. Am.
Chem. Soc., 2010, 132, 13879–13885; (b) D. Seebach, A. K. Beck,
S. Capone, G. Deniau, U. Groselj and E. Zass, Synthesis, 2009, 1–32.
31 J. W. Hilborn, Z.-H. Lu, A. R. Jurgens, Q. K. Fang, P. Byers, S. A. Wald
and C. H. Senanayake, Tetrahedron Lett., 2001, 42, 8919–8921.
32 A. K. Ghosh and L. Swanson, J. Org. Chem., 2003, 68, 9823–9826.
33 D. Seebach, D. F. Hook and A. Glattli, Biopolymers, 2006, 84, 23–37.
34 (a) Original concept: O. Cabon, D. Buisson, M. Larcheveque and
R. Azerad, Tetrahedron: Asymmetry, 1995, 6, 2211–2218;
(b) B. D. Feske, I. A. Kaluzna and J. D. Stewart, J. Org. Chem.,
2005, 70, 9654–9657.
Notes and references
1 (a) D. G. Gillingham, P. Stallforth, A. Adibekian, P. H. Seeberger
and D. Hilvert, Nat. Chem., 2010, 2, 102–105; (b) K. Baer,
N. Dueckers, W. Hummel and H. Groeger, ChemCatChem, 2010,
2, 939–942; (c) M. Sugiyama, Z. Hong, P.-H. Liang, S. M. Dean,
L. J. Whalen, W. A. Greenberg and C.-H. Wong, J. Am. Chem.
Soc., 2007, 129, 14811–14817; (d) J. Gildersleeve, A. Varvak,
S. Atwell, D. Evans and P. G. Schultz, Angew. Chem., Int. Ed.,
2003, 42, 5971–5973.
2 (a) M. T. Reetz, M. Bocola, L.-W. Wang, J. Sanchis, A. Cronin,
M. Arand, J. Zou, A. Archelas, A.-L. Bottalla, A. Naworyta and
S. L. Mowbray, J. Am. Chem. Soc., 2009, 131, 7334–7343;
(b) H. Jochens, K. Stiba, C. Savile, R. Fujii, J.-G. Yu,
T. Gerassenkov, R. J. Kazlauskas and U. T. Bornscheuer,
Angew. Chem., Int. Ed., 2009, 48, 3532–3535; (c) V. S. Fluxa,
D. Wahler and J.-L. Reymond, Nat. Protoc., 2008, 3, 1270–1277.
3 (a) S. Wu, J. P. Acevedo and M. T. Reetz, Proc. Natl. Acad. Sci.
U. S. A., 2010, 107, 2775–2780; (b) J. Rehdorf, M. D. Mihovilovic
and U. T. Bornscheuer, Angew. Chem., Int. Ed., 2010, 49, 4506–4508.
4 (a) V. Koehler, K. R. Bailey, A. Znabet, J. Raftery, M. Helliwell
and N. J. Turner, Angew. Chem., Int. Ed., 2010, 49, 2182–2184;
(b) K. R. Bailey, A. J. Ellis, R. Reiss, T. J. Snape and N. J. Turner,
Chem. Commun., 2007, 3640–3642.
5 (a) M. T. Reetz, S. Prasad, J. D. Carballeira, Y. Gumulya and
M. Bocola, J. Am. Chem. Soc., 2010, 132, 9144–9152; (b) J. Deska
and J.-E. Baeckvall, Org. Biomol. Chem., 2009, 7, 3379–3381;
(c) J. T. Gorke, F. Srienc and R. J. Kazlauskas, Chem. Commun.,
2008, 1235–1237.
6 (a) A. Pennacchio, L. Esposito, A. Zagari, M. Rossi and
C. A. Raia, Extremophiles, 2009, 13, 751–761; (b) M. M. Musa,
N. Lott, M. Laivenieks, L. Watanabe, C. Vieille and R. S. Phillips,
ChemCatChem, 2009, 1, 89–93; (c) C. V. Voss, C. C. Gruber,
K. Faber, T. Knaus, P. Macheroux and W. Kroutil, J. Am.
Chem. Soc., 2008, 130, 13969–13972.
7 C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R.
Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine,
G. W. Huisman and G. J. Hughes, Science, 2010, 329, 305–309.
c
2422 Chem. Commun., 2011, 47, 2420–2422
This journal is The Royal Society of Chemistry 2011