Table 1 ESI-measured dissociation constants for compounds 5–15
with a human telomeric 22-mer quadruplexa. NR2 groups are defined
in Scheme 1
COST Action MP0802 (to S.H. and V.G.), and the University
of Liege (FSR starting grant D-08/10 to V.G.).
Compound
Substitution pattern
n
NR2
Kd/mM
Notes and references
5
6
7
8
9
10
11
12
13
14
meta-
para-
meta-
meta-
para-
para-
meta-
meta-
para-
para-
meta-
n/a
1
2
3
2
2
1
1
1
1
1
2
n/a
pyr
pyr
pyr
dieth
dieth
pyr
pip
dieth
pip
6.0 ꢂ 0.6
70 ꢂ 50
35 ꢂ 9
1 D. J. Patel, A. T. Phan and V. Kuryavyi, Nucleic Acids Res., 2007,
35, 7429; S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd and
S. Neidle, Nucleic Acids Res., 2006, 34, 5402; S. Neidle, Curr. Opin.
Struct. Biol., 2009, 19, 239.
2 J. Huppert and S. Balasubramanian, Nucleic Acids Res., 2005, 33,
2908; A. Todd, M. Johnston and S. Neidle, Nucleic Acids Res.,
2005, 33, 2901.
3 M. J. McEachern, A. Krauskopf and E. H. Blackburn, Annu. Rev.
Genet., 2000, 34, 331.
4 J. L. Huppert and S. Balasubramanian, Nucleic Acids Res., 2006,
35, 406.
5 See for example: (a) A. Siddiqui-Jain, C. L. Grand, D. J. Bearss
and L. H. Hurley, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 11593;
Y. Qin, J. S. Fortin, D. Tye M. Gleason-Guzman, T. A. Brooks
and L. H. Hurley, Biochemistry, 2010, 49, 4208; (b) S. T. Hsu,
P. Varnai, A. Bugaut, A. P. Reszka, S. Neidle and
S. Balasubramanian, J. Am. Chem. Soc., 2009, 131, 13399;
M. Gunaratnam, S. Swank, S. M. Haider, K. Galesa,
A. P. Reszka, M. Beltran, F. Cuenca, J. A. Fletcher and
S. Neidle, J. Med. Chem., 2009, 52, 3774.
6 (a) For example: S. Kumari, A. Bugaut, J. L. Huppert and
S. Balasubramanian, Nat. Chem. Biol., 2007, 3, 218; M. Wieland
and J. S. Hartig, Chem. Biol., 2007, 14, 757; A. Bugaut,
R. Rodriguez, S. Kumari, S. T. Hsu and S. Balasubramanian,
Org. Biomol. Chem., 2010, 8, 2771; (b) J. Eddy and N. Maizels,
Nucleic Acids Res., 2007, 36, 1321.
7 (a) D. Sun, B. Thompson, B. E. Cathers, M. Salazar, S. M. Kerwin,
J. O. Trent, T. C. Jenkins, S. Neidle and L. H. Hurley, J. Med.
Chem., 1997, 40, 2113; (b) P. Phatak, J. C. Cookson, F. Dai,
V. Smith, R. B. Gartenhaus, M. F. Stevens and A. M. Burger, Br.
J. Cancer, 2007, 96, 1223; (c) J. W. Shay and W. E. Wright, Nat.
Rev. Drug Discovery, 2006, 5, 577.
8 A. De Cian, L. Lacroix, C. Douarre, N. Temime-Smaali,
C. Trentesaux, J. F. Riou and J. L. Mergny, Biochimie, 2008, 90,
131; D. Monchaud and M.-P. Teulade-Fichou, Org. Biomol.
Chem., 2008, 6, 627.
9 See for example: R. J. Harrison, S. M. Gowan, L. R. Kelland and
S. Neidle, Bioorg. Med. Chem. Lett., 1999, 9, 2463; M.-K. Cheng,
C. Modi, J. C. Cookson, I. Hutchinson, R. A. Heald, A. J. McCarroll,
S. Missailidis, F. Tanious, W. D. Wilson, J.-L. Mergny,
C. A. Laughton and M. F. G. Stevens, J. Med. Chem., 2008, 51, 963.
10 M. Read, R. J. Harrison, B. Romagnoli, F. A. Tanious,
S. H. Gowan, A. P. Reszka, W. D. Wilson, L. R. Kelland and
S. Neidle, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 4844.
11 A. M. Burger, F. Dai, C. M. Schultes, A. P. Reszka, M. J. Moore,
J. A. Double and S. Neidle, Cancer Res., 2005, 65, 1489.
12 N. H. Campbell, G. N. Parkinson, A. P. Reszka and S. Neidle,
J. Am. Chem. Soc., 2008, 130, 6722.
13 F. Rosu, E. De Pauw and V. Gabelica, Biochimie, 2008, 90, 1074;
V. Gabelica, Methods Mol. Biol., 2010, 613, 89.
14 S. M. Haider and S. Neidle, Biochem. Soc. Trans., 2009, 37, 583.
15 S. M. Haider and S. Neidle, Methods Mol. Biol., 2010, 608, 17. See
also the ESIw.
16 A. D. Moorhouse, A. M. Santos, M. Gunaratnam, M. Moore,
S. Neidle and J. E. Moses, J. Am. Chem. Soc., 2006, 128, 15972.
17 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004.
18 A. T. Phan, V. Kuryavyi, K. N. Luu and D. J. Patel, Nucleic Acids
Res., 2007, 35, 6517; A. Ambrus, D. Chen, J. Dai, T. Bialis,
R. A. Jones and D. Yang, Nucleic Acids Res., 2006, 34, 2723.
19 J. Das, S. N. Patil, R. Awasthi, C. P. Narasimhulu and S. Trehan,
Synthesis, 2005, 1801.
20 G. Collie, A. P. Reszka, S. M. Haider, V. Gabelica,
G. N. Parkinson and S. Neidle, Chem. Commun., 2009, 7482.
21 A. Casagrande, A. Alvino, G. Bianco, G. Ortaggi and
M. Franceschin, J. Mass Spectrom., 2009, 44, 530.
22 T. P. Garner, H. E. L. Williams, K. I. Gluszyk, S. Roe,
N. J. Oldham, M. F. G. Stevens, J. E. Moses and M. S. Searle,
Org. Biomol. Chem., 2009, 7, 4194.
5.0 ꢂ 1.0
100 ꢂ 19
49 ꢂ 26
250 ꢂ 130
3.0 ꢂ 0.6
77 ꢂ 12
32 ꢂ 5
dieth
pyr
n/a
15
BRACO-19
4.9 ꢂ 1.3
7.9 ꢂ 1.4
a
Abbreviations: (pyr) pyrrolidino, (dieth) diethyl amino, (pip)
piperidino. BRACO-19 has been used as a reference with data taken
from ref. 20. Esds from two ligand concentrations (5 and 10 mM) and
three voltage settings each.
or for duplex DNA. By examining the ESI-MS spectra (see Fig. S1
and accompanying text, ESIw), we noted that, in addition to
binding to tel22 to form 1 : 1 complexes, all ligands with para
substituents were causing partial dimerization of the (dTG4T)4
quadruplex. However, compounds 5, 8, 12 and 15 have high
affinity for the telomeric sequence, even in the presence of
(dTG4T)4. The correlation with the Kd values is shown in
Fig. S3 (ESIw). These are also the compounds that have
the highest affinity for the telomeric quadruplex. Calculated
binding energies15 (DEbinding) for 5, 7 and 15 are ꢀ8.64, ꢀ7.99
and ꢀ9.63 kcal moleꢀ1, respectively, which concurs with the
ranking order in Table 1.
Ligand 11 did not bind significantly to either of the other
sequences. None of the ligands bound to the duplex sequence.
Mixtures of 5 mM DNA duplex + 40 mM ligand were run
in an attempt to determine the Kd for ligand binding to duplex,
in order to calculate the selectivity of the ligands for the
telomeric quadruplex; no complex formation was detected
with any of the ligands examined in these particular experi-
ments (see Fig. S4, ESIw). From the noise level where the
complex should be detected, we estimated the Kd that would
lead to a detectable complex (S/N = 3 for the complex), and
deduced a Kd value for duplex binding of >3000 mM. This gives
a quadruplex/duplex selectivity ratio > 1000 for ligand 12, for
example. Although Kd values for the disubstituted triazole
compounds are not available, a Ka value22 for the analogue of
compound 6, with pyrrolidino end-groups of 7.7 ꢁ 105 Mꢀ1
,
suggests that the trisubstitution has resulted in an enhancement
of affinity, at least for the para-substituted compounds.
In summary a group of ligands have been designed which
demonstrate high affinity for an intramolecular human telomeric
quadruplex that is comparable to, and in several instances,
exceeds that of the established acridine ligand BRACO-19.
The tris-triazole ligands have higher selectivity for quadruplex
over duplex DNA compared to BRACO-19, with >1000 fold
difference in Kd values. Three compounds 8, 12 and 15 have been
selected for biological studies, which are currently underway.
This work was supported by a CRUK Programme Grant
(to S.N.), a CRUK Research Studentship (to J.E.M. and S.N.
for C.M.L.), the FNRS (research associate position to V.G.),
c
9118 Chem. Commun., 2010, 46, 9116–9118
This journal is The Royal Society of Chemistry 2010