N. Alexander et al. / Inorganica Chimica Acta 365 (2011) 480–483
483
one-dimensional polymeric chains along the crystallographic a
axis involving supramolecular interactions (Fig. 2). The Tl–S–Tl an-
gle within the chain is 152.21°. Stacking of the chains along the c
axis reveals the presence of TlꢀꢀꢀꢀH contacts (2.96 Å; Fig. 3), which
are among the shortest reported so far [17].
charge from The Cambridge Crystallographic Data Centre via
Supplementary data associated with this article can be found, in
The ORTEP diagram of [Tl(echdtc)]2 is shown in Fig. 4. The coor-
dination geometry of the metal is very similar to that observed in
(1), with the thallium atom bound to two sulphur atoms of the
same echdtc molecule at 2.982(2) and 3.078(2) Å and to two other
sulphurs of a centrosymmetrically-related dithiocarbamate moiety
at 3.063(2) and 3.164(2) Å. A relatively weak TlꢀꢀꢀꢀS interaction of
3.640(2) Å is observed. The TlꢀꢀꢀꢀC(1) and TlꢀꢀꢀꢀTl separations within
a dimer are 3.362(6) and 3.658(1) Å, respectively. The S–C–S angle
of the dithiocarbamate is 118.0(3)°. As observed in (1), adjacent di-
meric units are linked along the a axis into a one dimensional poly-
meric chain by TlꢀꢀꢀꢀS contacts (Fig. 5), where. Tl–S–Tl angle
(159.46°) shows a slight increase with respect to the methyl ana-
logue. In contrast with (1), no TlꢀꢀꢀꢀH short contacts are present
among the chains because of the change in conformation of the
cyclohexyl ring due to the introduction of ethyl group. Though
the neighbouring non-bonded groups are flexible, thallium adjusts
its contacts to retain a hemisphere free for its pair of s electrons in
the presence of a sterically demanding ethyl group [18].
References
[1] J. Goldschmidt, T. Wanger, A. Engelhorn, H. Friedrich, M. Happel, A. Ilango,
M. Engelmann, I.W. Stuermer, F.W. Ohl, H. Scheich, NeuroImage 49 (2010)
303.
[2] J. Goldschmidt, W. Zuschratter, H. Scheich, NeuroImage 23 (2004) 638.
[3] R.A. Patel, G.A. Beller, Curr. Opin. Cardiol. 5 (2006) 457.
[4] N.S. Zefrov (Ed.), Khimicheskaya entsiklopediya, Chemical Encyclopedia, vol. 4,
Bol’shaya Ros, Entsiklepediya, Moscow, 1995, p. 492.
[5] C. Janiak, J. Chem. Soc. (2003) 2781.
[6] R.P. Feazell, C.E. Carson, K.K. Klausmeyer, Inorg. Chem. 45 (2006) 935.
[7] P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72 (2000) 315.
[8] M.A. Baldo, M.E. Thompson, S.R. Forrest, Pure Appl. Chem. 71 (1999) 2095.
[9] P.J. Heard, K.D. Karlin (Eds.), Prog. Inorg. Chem. 53 (2005) 1.
[10] A.V. Ivanov, O.A. Bredynk, A.V. Gerasimenko, O.N. Antzutkin, W. Forsling, Russ.
J. Coord. Chem. 32 (2006) 339.
[11] H. Pritzkow, P. Jennische, Acta Chem. Scand., Ser. A 29 (1975) 60.
[12] E. Elfwing, H. Anacker-Eickhoff, R. Hesse, Acta Chem. Scand. 30 (1976)
335.
[13] C. Rizzoli, K. Ramalingam, N. Alexander, Acta Crystallogr., Sect. E 64 (2008)
1020.
[14] Bruker, SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
[15] M. O’Keefe, N.E. Brese, J. Am. Chem. Soc. 113 (1991) 3226.
[16] S.P. Summers, K.A. Abboud, S.R. Farrah, G.J. Palenik, Inorg. Chem. 33 (1994)
88.
Appendix A. Supplementary material
[17] A.V. Ivanov, O.A. Bredynk, A.V. Gerasimenko, O.N. Antzutkin, Doklady Phys.
Chem. 420 (2008) 130.
[18] F. Wiesbrock, H. Schmidbaur, J. Am. Chem. Soc. 125 (2003) 3622.
CCDC 747993 and 747992 contain the supplementary crystallo-
graphic data for (1) and (2). These data can be obtained free of