17 The preformed lithium salt of isoleucine/urea (5 : 5 or 10 : 10 mol%)
resulted overwhelmingly in by-product formation.
Notes and references
18 Squaramide is an interesting new hydrogen bond donor, the parent
primary diamine would be interesting to examine, see: J. P. Malerich,
K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416–
14417.
19 Interesting to examine will be: amino acids related to isoleucine and
L-threonine, alternative O-protected threonines, and b-amino acids. It
can be further imagined that replacing the carboxylic acid moiety of
amino acids with a sulfate or phosphate ester, or a phosphonate or
sulfonate moiety will be valuable to pursue.
1 The Way of SynthesisT. Hudlicky´ and J. W. Reed, ed.; Wiley
VCH:Weinheim, 2010, specifically see p. 9.
2 For recent reviews on stereogenic quaternary carbon formation, see:
(a) O. Riant and J. Hannedouche, Org. Biomol. Chem., 2007, 5, 873–
888; (b) B. M. Trost and C. Jiang, Synthesis, 2006, 369–396; (c) J.
Christoffers and A. Baro, Adv. Synth. Catal., 2005, 347, 1473–1482.
3 (a) D. Lu, Y. Gong and W. Wang, Adv. Synth. Catal., 2010, 352, 644–
650; (b) Z. Zheng, B. L. Perkins and B. Ni, J. Am. Chem. Soc., 2010,
132, 50–51; (c) M. Lombardo, M. Chiarucci, A. Quintavalla and C.
Trombinia, Adv. Synth. Catal., 2009, 351, 2801–2806; (d) M. Wiesner,
J. D. Revell and H. Wennemers, Angew. Chem., Int. Ed., 2008, 47, 1871–
1874; (e) S. Zhu, S. Yu and D. Ma, Angew. Chem., Int. Ed., 2008, 47,
545–548.
4 One 5 mol% catalyst loading example was demonstrated, see ref. 3c:
isobutyraldehyde/b-nitrostyrene (2 : 1), 5 mol% catalyst loading, 22 h,
99% yield, 76% ee.
5 N. Mase, R. Thayumanavan, F. Tanaka and C. F. Barbas III, Org. Lett.,
2004, 6, 2527–2530.
20 M. Kotke and P. R. Schreiner, (Thio)urea Organocatalysts. In Hydrogen
Bonding in Organic Synthesis, P. M. Pihko, Ed.; Wiley-VCH: Weinhein,
2009, p. 141–352.
21 J. Wang, H. Li, B. Lou, L. Zu, H. Guo and W. Wang, Chem.–Eur. J.,
2006, 12, 4321–4332.
22 See ref. 5: cyclohexylcarboxaldehyde/b-nitrostyrene (2 : 1), 30 mol%
loading, 96 h, 90% yield, 59% ee.
23 See ref. 21: cyclohexylcarboxaldehyde/b-nitrostyrene (10 : 1), 20 mol%
loading, 96 h, 42% yield, 64% ee.
24 (a) D.-Q. Xu, H.-D. Yue, S.-P. Luo, A.-B. Xia, S. Zhang and Z.-Y. Xu,
Org. Biomol. Chem., 2008, 6, 2054–2057; (b) Z.-B. Li, S.-P. Luo, Y. Guo,
A.-B. Xia and D.-Q. Xu, Org. Biomol. Chem., 2010, 8, 2505–2508.
25 To see all of Demir’s relevant research, see: (a) A. S. Demir and S.
Eymur, Tetrahedron: Asymmetry, 2010, 21, 405–409; (b) A. S. Demir
6 M. P. Lalonde, Y. Chen and E. N. Jacobsen, Angew. Chem., Int. Ed.,
2006, 45, 6366–6370.
7 S. H. McCooey and S. J. Connon, Org. Lett., 2007, 9, 599–
602.
8 10 mol% catalyst loading. For lead references of those methods
requiring £5 equiv of an a,a-substituted aldehyde and providing ≥84%
ee, see ref. 3e, 7, and: (a) J. Xiao, F.-X. Xu, Y.-P. Lu and T.-P. Loh, Org.
Lett., 2010, 12, 1220–1223; (b) P. Li, L. Wang, M. Wang and Y. Zhang,
Eur. J. Org. Chem., 2008, 1157–1160; (c) N. Mase, K. Watanabe, H.
Yoda, K. Takabe, F. Tanaka and C. F. Barbas III, J. Am. Chem. Soc.,
2006, 128, 4966–4967.
9 Regarding 10 mol% catalyst loadings and the lowest reported
isobutyraldehyde/b-nitrostyrene ratio (2 : 1), ref. 3e and 8a provide the
best results, respectively: 96 h, 86% yield, 95% ee and 60 h, 97% yield,
92% ee. All other cited work in reference 8 provided < 89% ee.
10 20 mol% catalyst loading. For lead references of those methods
requiring £ 4 equiv of an a,a-substituted aldehyde and providing ≥85%
ee, see ref. 6 and: (a) M. Yoshida, A. Sato and S. Hara, Org. Biomol.
Chem., 2010, 8, 3031–3036; (b) C. Chang, S.-H. Li, R. J. Reddy and
K. Chen, Adv. Synth. Catal., 2009, 351, 1273–1278; (c) X.-j. Zhang,
S.-p. Liu, J.-h. Lao, G.-j. Du, M. Yan and A. S. C. Chan, Tetrahedron:
Asymmetry, 2009, 20, 1451–1458; (d) X.-j. Zhang, S.-p. Liu, X.-m. Li,
M. Yan and A. S. C. Chan, Chem. Commun., 2009, 833–835; (e) Q.
Zhang, B. Ni and A. D. Headley, Tetrahedron, 2008, 64, 5091–5097;
(f) A. Sato, M. Yoshida and S. Hara, Chem. Commun., 2008, 6242–
6244.
¨
and S. Eymur, Tetrahedron: Asymmetry, 2010, 21, 112–115; (c) O. Reis,
S. Eymur, B. Reis and A. S. Demir, Chem. Commun., 2009, 1088–1090.
26 Demir’s quaternary carbon bond formation conditions and results:
isobutyraldehyde/b-nitrostyrene (3 : 1), 20 mol% proline/20 mol%
Schreiner’s thiourea, 36 h, 66% yield, 72% ee, as found in ref. 25b.
27 Related self-assembly based approaches characterize other reactions,
for an aldol reaction and an a-hydroxylation of aldehydes, see
respectively:(a) X. Company, G. Valero, L. Crovetto, A. Moyano and R.
Rios, Chem.–Eur. J., 2009, 15, 6564–6568; (b) S. L. Poe, A. R. Bogdan,
B. P. Mason, J. L. Steinbacher, S. M. Opalka and D. T. McQuade,
J. Org. Chem., 2009, 74, 1574–1580.
28 (a) Sulfonamides and sulfamides are already established as strong
hydrogen bond donors, see: A. A. Rodriguez, H. Yoo, J. W. Ziller and
K. J. Shea, Tetrahedron Lett., 2009, 50, 6830–6833; (b) O. Mammoliti, S.
Allasia, S. Dixon and J. D. Kilburn, Tetrahedron, 2009, 65, 2184–2195.
29 See for example: (a) C. G. Kokotosa and G. Kokotos, Adv. Synth.
Catal., 2009, 351, 1355–1362; (b) D. A. Yalalov, S. B. Tsogoeva and S.
Schmatz, Adv. Synth. Catal., 2006, 348, 826–832.
30 Depictions of nitro groups hydrogen bonding to thioureas are normally
drawn with both N–H groups of the thiourea and both oxygen atoms
of the nitro group coplanar and hydrogen bonded, for example see:
ref. 20 and ref. 31 Some debate remains in the literature, with a 2006
computational study suggesting a ‘one oxygen model’ (see ref. 29b)
and other groups having variously used this model (see ref. 6). Our
depicted and favored transition state model, synclinical I (Fig. 2), can
only accommodate a one oxygen activation model.
11 Ref. 6,10a,c,d,f report ≥98% ee for the reaction of isobutyraldehyde (2.0
to 3.7 equiv, 20 mol% cat. loading) with b-nitrostyrene.
12 For a 30 mol% example, see ref. 5.
13 To our knowledge the use of < 2.0 equiv of an a,a-branched aldehyde
has only been elaborated on by Yoshida, see Table 4 (only entry 2) of
ref. 10a.
31 S. J. Connon, Chem.–Eur. J., 2006, 12, 5418–5427.
32 Orbital activation of the nitroalkene alone, e.g. a nitroalkene, sulfamide
pair independent of the carboxylate moiety is unlikely. This is borne
out by performing the reaction in the absence of a base; the nitroalkene,
sulfamide pair would still exist, yet no product formation was noted
(Table 1, entry 11).
33 (a) A. Risaliti, M. Forchiassin and E. Valentin, Tetrahedron, 1968, 24,
1889–1898; (b) F. P. Colonna, E. Valentin, G. Pittaco and A. Risaliti,
Tetrahedron, 1973, 29, 3011–3017; (c) E. Valentin, G. Pittaco, F. P.
Colonna and A. Risaliti, Tetrahedron, 1974, 30, 2741–2746; (d) S.
Fabrissin, S. Fatutta and A. Risaliti, J. Chem. Soc., Perkin Trans. 1,
1981, 109–112.
14 (a) L.-q. Gua and G. Zhaoa, Adv. Synth. Catal., 2007, 349, 1629–1632;
(b) B. M. Choudary, Ch. V. Rajasekhar, G. G. Krishna and K. R. Reddy,
Synth. Commun., 2007, 37, 91–98.
15 A single a,a-substituted aldehyde was studied, isobutyraldehyde/b-
nitrostyrene (3 : 1), 5 mol% catalyst loading, 84 h, 71% yield, 85% ee,
see Supp Info (page S-6†) of: T. Mandal and C.-G. Zhao, Angew. Chem.,
Int. Ed., 2008, 47, 7714–7717.
16 For example, see: (a) M. Herna´ndez-Rodr´ıguez and E. Juaristi,
Tetrahedron, 2007, 63, 7673–7678; (b) G. M. Kyne, M. E. Light, M. B.
Hursthouse, J. de Mendoza and J. D. Kilburn, J. Chem. Soc., Perkin
Trans. 1, 2001, 1258–1263; (c) B. C. Hamann, N. R. Branda and J.
Rebek, Jr., Tetrahedron Lett., 1993, 34, 6837–6840.
34 D. Seebach and J. Golin´ski, Helv. Chim. Acta, 1981, 64, 1413–1423.
56 | Org. Biomol. Chem., 2011, 9, 52–56
This journal is
The Royal Society of Chemistry 2011
©