Lewis Acid-Catalyzed Isomerization of 2-Arylcyclopropane-1,1-dicarboxylates
References
how to control the chemo-, regio- and stereoselectiv-
ity of this reaction by the appropriate choice of the
substrate, catalyst and reaction conditions. Cyclopro-
panes bearing the moderately nucleophilic aryl sub-
stituents underwent isomerization via treatment with
strong activating TMSOTf, while the moderately
[1] a) K. B. Wiberg, in: The Chemistry of the Cyclopropyl
Group, Vol. 1, (Ed.: Z. Rappoport), Wiley & Sons, Chi-
chester, 1987, pp 1–26; b) J. F. Liebman, in: The
Chemistry of the Cyclopropyl Group, Vol. 2, (Ed.: Z.
Rappoport), Wiley & Sons, Chichester, 1995, pp 223–
260; c) H. N. C. Wong, M.-Y. Hon, C.-W. Tse, Y.-C.
Yip, J. Tanko, T. Hudlicky, Chem. Rev. 1989, 89, 165–
198; d) S. Angerer, in: Houben-Weyl, Methods of Or-
ganic Chemistry, Vol. E 17c, (Ed: A. de Meijere),
Thieme, Stuttgart, 1997, pp 2041–2120.
active SnACHTUNGTRENNUNG(OTf)2 was the superior catalyst for the iso-
merization of the cyclopropanes with highly nucleo-
philic aryl and heteroaryl substituents. Our method
stands out as a simple and versatile route towards the
broad series of 2-arylcyclopropane-1,1-dicarboxylates.
Together with Corey–Chaykovsky cyclopropana-
tion,[17] this method constitutes a facile two-step ho-
mologation of arylidenemalonates into 2-styrylmalo-
nates. These polyfunctional compounds have self-utili-
ty as well as can be easily transformed into useful
products owing to the presence of easily modified aryl
group, C=C bond and malonyl fragment. We believe
that our proposed approach presents a new and
useful tool in organic synthesis and appears to be a
considerably more convenient and versatile alterna-
tive to the methods reported earlier.[20]
[2] T. S. Chambers, G. B. Kistyakowsky, J. Am. Chem. Soc.
1934, 56, 399–405.
[3] A. Lifshitz, C. Tamburu, F. Dubnikova, J. Phys. Chem.
A 2009, 113, 10446–10451.
[4] F. D. Kopinke, G. Zimmerman, J. Aust, K. Scherzer,
Chem. Ber. 1989, 122, 721–725.
[5] a) K. Mizuno, N. Ichinose, Y. Otsuji, J. Am. Chem. Soc.
1985, 107, 5797–5798; b) H. E. Zimmerman, A. P.
Kamath, J. Am. Chem. Soc. 1988, 110, 900–911; c) S. S.
Hixson, L. A. Franke, J. Org. Chem. 1988, 53, 2706–
2711.
[6] M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007,
107, 3117–3179.
[7] Some recent examples: a) F. De Simone, J. Andres, R.
Torosantucci, J. Waser, Org. Lett. 2009, 11, 1023–1026;
b) R. G. Vaswani, J. J. Day, J. L. Wood, Org. Lett. 2009,
11, 4532–4535; c) X.-M. Zhang, Y.-Q. Tu, Y.-J. Jiang,
Y.-Q. Zhang, C.-A. Fan, F. M. Zhang, Chem. Commun.
2009, 4726–4728; d) R. Shintani, H. Nakatsu, K. Takat-
su, T. Hayashi, Chem. Eur. J. 2009, 15, 8692–8694;
e) L. Jiao, M. Lin, Z.-X. Yu, Chem. Commun. 2010,
1059–1061.
[8] a) T. Hudlicky, T. M. Kutchan, S. M. Naqvi, Org. React.
1985, 33, 247–335; b) J. E. Baldwin, Chem. Rev. 2003,
103, 1197–1212; c) S. C. Wang, D. J. Tantillo, J. Organo-
met. Chem. 2006, 691, 4386–4392.
Experimental Section
Synthesis of Styrylmalonate 3b; Typical Procedure
A solution of TMSOTf (0.31 mL, 1.2 mmol) in dry chloro-
benzene (1 mL) was added to a solution of cyclopropane 1b
(313 mg, 1.0 mmol) in dry chlorobenzene (20 mL) containing
activated molecular sieves 4 ꢂ at room temperature under
an argon atmosphere. The reaction mixture was heated
under reflux for 1 h, poured into 10 mL of saturated aque-
ous NaHCO3 solution and extracted with CH2Cl2 (3ꢃ
10 mL). The combined organic fractions were washed with
aqueous NaHCO3 solution (2ꢃ10 mL), water (2ꢃ10 mL)
and dried with anhydrous Na2SO4. The solvent was removed
under vacuum, the residue was purified by column chroma-
tography (SiO2, diethyl ether:petroleum ether; 1:1, Rf =0.6)
to afford 3b as yellow crystals (mp 69–708C); yield: 250 mg
(80%); IR (nujol): n=2970, 2875, 1745, 1630, 1590, 1455,
[9] a) A. M. Bernard, A. Frongia, P. P. Piras, F. Secci, M.
Spiga, Org. Lett. 2005, 7, 4565–4568; b) R. K. Bowman,
J. S. Johnson, Org. Lett. 2006, 8, 573–576; c) A. Solde-
villa, D. Sampedro, Org. Prep. Proced. 2007, 39, 561–
590.
1405, 1270, 1205, 1155, 1080, 1020, 980, 950, 830 cmꢀ1
;
[10] T. Hudlicky, R. L. Fan, J. W. Reed, K. G. Gadamasetti,
1H NMR (400 MHz, CDCl3): d=3.78 (s, 6H, 2ꢃCH3O),
Org. React. 1992, 42, 1–133.
3
3
[11] Reviews: a) H.-U. Reissig, R. Zimmer, Chem. Rev.
2003, 103, 1151–1196; b) M. Yu, B. L. Pagenkopf, Tet-
rahedron 2005, 61, 321–347; c) D. Agrawal, V. K.
Yadav, Chem. Commun. 2008, 6471–6488; d) F. De Si-
mone, J. Waser, Synthesis 2009, 3353–3374; e) C. A.
Carson, M. A. Kerr, Chem. Soc. Rev. 2009, 38, 3051–
3060.
[12] Some recent articles: a) C. Ladjel, N. Fuchs, L. Gre-
maud, A. Alexakis, Synlett 2010, 317–320; b) A. Kara-
deolian, M. A. Kerr, Angew. Chem. Int. Ed. 2010, 49,
1133–1135; c) M. E. Jung, J. J. Chang, Org. Lett. 2010,
12, 2962–2965; d) M. M. Abd Rabo Moustafa, B. L. Pa-
genkopf, Org. Lett. 2010, 12, 3168–3171; e) S. Xing, W.
Pan, C. Liu, J. Ren, Z. Wang, Angew. Chem. Int. Ed.
2010, 49, 3215–3218; f) Y. Zhang, F. Liu, J. Zhang,
Chem. Eur. J. 2010, 16, 6146–6150; g) A. T. Parsons,
4.22 (d, J=8.8 Hz, 1H, CH), 6.41 (dd, J=8.8, 16.0 Hz, 1H,
3
3
CH=), 6.53 (d, J=16.0 Hz, 1H, CH=), 7.27 (d, J=8.4 Hz,
3
2H, Ar), 7.44 (d, J=8.4 Hz, 2H, Ar); 13C NMR (100 MHz,
CDCl3): d=52.89 (2ꢃCH3), 55.42 (CH), 121.44 (CH=),
122.02 (C, Ar), 128.15 (2ꢃCH, Ar), 131.68 (2ꢃCH, Ar),
134.04 (CH=), 134.90 (C, Ar), 168.14 (2ꢃCO2Me); GC-MS
(EI, 70 eV): m/z (%)=314 (42), 312 (47) [M]+, 195 (100),
193 (95), 115 (85), 58 (31); anal. calcd. for C13H13BrO4: C
49.86, H 4.18; found: C 50.25, H 4.16.
Acknowledgements
We thank the Russian Foundation of Basic Research (Project
09-03-00244-a) for financial support of this work.
Adv. Synth. Catal. 2010, 352, 3179 – 3184
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3183