Full Paper
(COCH3); 31P NMR (81 MHz, CDCl3): d=39.88; IR (KBr): n˜ =1626
(CN), 1649 (CO), 1713 cmÀ1 (CO); elemental analysis calcd (%) for
C14H28N5O3P: C 48.7, H 8.1, N 20.3; found: C 48.61, 48.54, H 8.03,
8.00, N 20.22, 20.19.
Attempts to carry out diaza-Wittig cyclization with trans-
phosphazenes 1a’,c’,d’,e’, and 1a–d
A solution of (triphenyl)phosphazene 1a’,c’,d’,e’ (0.4 mmol) in ab-
solute benzene (ꢀ3 mL ) was heated at 75–808C for 1–2 h until
the initial phosphazene disappeared (by TLC). The precipitate
formed after cooling was separated by filtration, washed with
hexane, and dried in air to give pyrazole 7a (230 mg, 89%),[14a] 7c
(266 mg, 96%),[14a] 7d (245 mg, 96%).[14a] trans-Phosphazene F-1e’,
on being heated under similar reaction conditions, gave a complex
reaction mixture.[14b] Attempts to carry out the same reaction with
tris(dimethylamino)phosphazenes 1a–d failed. After heating ben-
zene solutions of these phosphazenes to reflux for 30 h, no
changes in the reaction mixtures were observed (by TLC and
1H NMR spectroscopy).
Synthesis of trans-phosphazenes 1a’,c’,d’ by reactions of
vinyldiazo compounds 3 a’,c’,d’ with PPh3.
trans-Diazo compound 3a,c,d (1 mmol) was added to a solution of
triphenylphosphine (1 mmol) in of Et2O (ꢀ3 mL) without immedi-
ate visible changes in the reaction mixture. After 3–21 h away from
light and air at room temperature, a precipitate was separated by
filtration, washed with benzene (21 mL), and dried under
vacuum in a desiccator at 10–15 mmHg to furnish phosphazenes
1a’,c’,d’. Phosphazenes 1c’,d’ in CDCl3 solution are slowly hydro-
1
lyzed (evidently by protic-acid catalysis), and in the H NMR spectra
of these compounds the signals of the hydrazone impurities
appear with time (at room temperature in 2–3 d).
Tandem process for the synthesis of pyridazines 5 by
reactions with P(NMe2)3
Dimethyl ester of trans-4-(triphenylphosphoranylidene)azino-
pent-2-endioic acid (1a’): Yield: 388 mg (87%), yellow solid, m.p.
108–1098C (Et2O); Rf =0.16 (petroleum ether/EtOAc 3:1); 1H NMR
(300 MHz, CDCl3): d=3.76 (s, 3H; OCH3), 3.78 (s, 3H; OCH3), 7.42–
7.74 (m, 16H; 3C6H5, C2H=), 8.12 ppm (d, 3J(H,H)=16.0 Hz, 1H,
C3H=); 13C NMR (75 MHz, CDCl3): d=51.8, 51.9 (COOCH3), 119.9
Tris(dimethylamino)phosphine (0.32 g, 2 mmol) was added drop-
wise to a solution of cis-vinyldiazoacetate 4a,f,g (2 mmol) in 5 mL
of absolute CH2Cl2 (4a), CH3CN (4a,f), or Et2O (4g). The addition
was accompanied by exothermic process, and the reaction mixture
was stirred at room temperature for 12 h (4a), at 80–818C for 2 h
(4a,f), or 36 h (4g) until the reaction was complete (monitoring by
1
3
(C2), 127.1 (d, J(C,P)=93.8 Hz; i-C-arom.), 129.3 (d, J(C,P)=10.9 Hz;
m-C-arom.), 130.1 (C3), 133.2 (p-C-arom.), 134.1 (d, J(C,P)=8.9 Hz;
2
o-C-arom.), 141.0 (d, 3J(C,P)=41.9 Hz; C=N), 166.7, 170.4 ppm
(COOCH3); UV (EtOH): lmax(lge)=219 nm (3.53), 359 nm (3.33); UV
(CH3CN): lmax(lge)=223 nm (3.90), 355 nm (3.73); elemental analy-
sis calcd (%) for C25H23N2O4P: C 67.3, H 5.2, N 6.3; found: C 67.21,
67.37, H 5.11, 5.17, N 6.33, 6.61.
1
TLC and H NMR or 31P NMR spectra). After removal of the solvent
the residue was subjected to flash chromatography (10 g of SiO2,
eluents: hexane and Et2O in gradient regime) to furnish pyridazines
5a,f,g.
6-Ethoxy-3-ethoxycarbonylpyridazine (5a): Yield (in CH3CN):
361 mg (92%), colorless solid, m.p. 80–818C (hexane), Rf =0.49
Diethyl ester of trans-3-methyl-4-(triphenylphosphoranyl-
idene)azinopent-2-endioic acid (1c’): Yield: 420 mg (86%), yellow
1
(EtOAc); H NMR (300 MHz, CDCl3): d=1.45 (t, J=7.4 Hz, 3H; CH3),
1
solid, m.p. 145–1468C (Et2O); Rf =0.21 (EtOAc); H NMR (300 MHz,
1.47 (t, J=7.0 Hz, 3H; CH3), 4.48 (q, J=7.4 Hz, 2H; CH2), 4.67 (q, J=
7.0 Hz, 2H; CH2), 7.00 (d, 3J(H,H)=9.4 Hz, 1H; C5H), 8.05 ppm (d,
3J(H,H)=9.4 Hz, 1H; C4H); 13C NMR (100 MHz, CDCl3 d=14.2, 14.4
(2CH2CH3), 62.1, 64.2 (2CH2CH3), 117.0 (C5), 130.1 (C4), 147.7 (C3),
164.1 (C6), 165.8 ppm (CO2Et); IR (KBr): n˜ =3065 (CH d), 1716 (CO),
1581, 1445 cmÀ1 (ring, g); HRMS (ESI-GCT) calcd for C9H12N2O3
[M+H]+: 197.0926; found: 197.0930.
CDCl3): d=1.26 (t, J=7.3 Hz, 3H; CH3), 1.34 (t, J=7.3 Hz, 3H, CH3),
2.31 (s, 3H; CH3), 4.14 (q, J=7.3 Hz, 2H; CH2), 4.32 (q, J=7.3 Hz,
2H; CH3), 5.66 (s, 1H; CH=), 7.45–7.72 ppm (m, 15H; 3C6H5);
13C NMR (75 MHz, CDCl3): d=14.1 (2CH3), 14.8, 14.9 (2CH2CH3),
59.8, 60.9 (2CH2CH3), 115.21 (C2H=), 128.6 (d, 1J(C,P)=93.8 Hz; i-C-
arom.), 129.0 (d, 3J(C,P)=12.0 Hz; m-C-arom.), 150.7 (C3), 132.7 (p-C-
arom.), 133.8 (d, 2J(C,P)=8.0 Hz; o-C-arom.), 151.7 (d, 3J(C,P)=
45.9 Hz; C=N), 167.8, 168.8 ppm (2CO2Et); 31P NMR (81 MHz,
CDCl3): d=20.17 ppm; IR (KBr): n˜ =1606 (CN), 1701 (CO), 1724 cmÀ1
(CO); UV (EtOH): lmax(lge)=209 (4.08), 221 (4.05), 345 nm (3.97); el-
emental analysis calcd (%) for C28H29N2O4P: C 68.9, H 5.98, N 5.73;
found: C 68.88, H 5.99, N 5.73.
6-Ethoxy-3-ethoxycarbonyl-4-phenylpyridazine
(5 f):
Yield:
480 mg (88%). Colorless solid, m.p. 67–698C (Et2O), Rf =0.12
(hexane/Et2O 2:1); 1H NMR (400 MHz, CDCl3): d=1.15 (t, 3J(H,H)=
3
7.3 Hz, 3H; OCH2CH3), 1.45 (t, J(H,H)=7.0 Hz, 3H; OCH2CH3), 4.25
(q, 3J(H,H)=7.3 Hz, 2H; OCH2CH3), 4.66 (q, 3J(H,H)=7.0 Hz, 2H;
OCH2CH3), 6.91 (s, 1H; CH=), 7.34–7.31 (m, 2H; o-H-arom.), 7.43–
7.42 ppm (m, 3H, m,p-H-arom.); 13C NMR (100 MHz, CDCl3): d=
13.3, 14.0 (CH2CH3), 61.4, 63.5 (CH2CH3), 116.3 (CH=), 127.4 (o-C-
arom.), 128.2 (m-C-arom.), 128.8 (p-C-arom.), 134.9 (i-C-arom.),
142.3 (C3), 148.7 (C6), 164.9 ppm (CO2Et); IR (neat): n˜ =1734 (CO2Et),
1590, 1497 cmÀ1 (Ph); HRMS (ESI-GCT) calcd for C15H16N2O3 [M+H]+
: 273.1239, found: 273.1239.
Methyl ester of trans-3-methyl-5-oxo-4-(triphenylphosphoranyl-
idene)azinohex-2-enoic acid (1d’): Yield: 329 mg (74%), pale-
yellow solid, m.p. 1228C (Et2O); Rf =0.17 (EtOAc); 1H NMR
(300 MHz, CDCl3): d=2.19 (s, 3H; CH3), 2.34 (d, J=1.45 Hz, 3H;
CH3), 3.71 (s, 3H; OMe), 5.81 (d, J=1.45 Hz, 1H; CH=), 7.49–
7.71 ppm (m, 15H; 3C6H5); 13C NMR (75 MHz, CDCl3): d=18.7,
25.8 (2CH3), 51.2 (COOCH3), 120.3 (CH=), 127.74 (d, 1J(C,P)=
6-Ethoxy-3-ethoxycarbonyl-4,5-propanopyridazine (5g): Yield:
420 mg (89%), colorless solid, m.p. 139–1408C (Et2O); Rf =0.33
(hexane/EtOAc 1:1); 1H NMR (400 MHz, CDCl3): d=1.45 (t, J=
7.3 Hz, 3H; CH3), 1.47 (t, J=6.5 Hz, 3H; CH3), 2.22–2.12 (m, 2H;
CH2), 2.93–2.88 (m, 2H; CH2), 3.34–3.28 (m, 2H; CH2), 4.46 (q, J=
7.3 Hz, 2H; CH2), 4.69 ppm (q, J=6.5 Hz, 2H; CH2); 13C NMR
(100 MHz, CDCl3): d=14.0, 14.3 (2CH2CH3), 23.2, 28.6, 33.1
(CH2CH2CH2), 61.3, 63.4 (2CH2CH3), 133.5 (C=CCOEt), 145.2
(CCO2Et), 149.0 (C=CCO2Et), 163.6 (COEt), 164.4 ppm (CO2Et); ele-
mental analysis calcd (%) for C12H16N2O3: C 61.02, H 6.78, N 11.86;
found: C 61.12, 61.03, H 6.83, 6.93, N 11.93, 11.93.
3
93.8 Hz; i-C-arom.), 129.2 (d, J(C,P)=12.0 Hz; m-C-arom.), 132.4 (d,
2J(C,P)=9.5 Hz; o-C-arom.), 133.1 (p-C-arom.), 153.7 (C3), 156.6 (d,
3J(C,P)=42.0 Hz; C=N), 167.6 (COOCH3), 196.7 ppm (COCH3);
31P NMR (81 MHz, CDCl3): d=21.32 ppm; IR (KBr): n˜ =1648 (CO),
1714 cmÀ1 (CO); UV (EtOH): lmax(lge)=209 (4.37), 220 (4.41), 223
(4.39), 274 (3.95), 326 nm (4.27); elemental analysis calcd (%) for
C26H25N2O3P: C 70.27, H 5.6, N 6.3; found: C 70.23, 70.40, H 5.69,
5.78, N 6.34, 6.27.
Chem. Eur. J. 2016, 22, 174 – 184
181
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim