and 2,6,8-trifunctionalized purine derivatives.5b,6b,6c The
partial functionalization of purines via lithiation,7 mag-
nesiation,8 or zincation9 has also been reported. The suc-
cessive functionalization ofpositions 8, 6, and2 ofthesame
purine scaffold with use of organometallic intermediates
is complicated and depends highly on the appropriate
choice of the masked functional groups A, B, and C at
these positions as well as the protecting group (PG) of
purine 3 (Figure 1). After extensive experimentation, we
report herein an optimum combination of A, B, C, and PG
allowing the successive generation of Zn or Mg intermedi-
ates at positions 8, 6, and 2, which finally provides access to
a wide range of new polyfunctional purines.
Table 1. Functionalization of Position 8 via Zincated Purine 5
Scheme 1. General Reaction Scheme
a Isolated, analytically pure product. b Obtained after addition of 5%
CuCN 2LiCl. c Obtained by Pd-catalyzed acylation reaction with 2%
3
Pd(PPh3)4. d Obtained by Pd-catalyzed cross-coupling reaction with 2%
Pd(dba)2 and 4% P(o-furyl)3 as catalyst. e Obtained from 6a by Pd-
catalyzed coupling reaction with 1.2 equiv of NEt3, 4% CuI, 2%
Pd(dba)2, and 4% P(o-furyl)3.
(TMP = 2,2,6,6-tetramethylpiperidide)11 within 15 min at
25 °C leading to the zincated purine 5 (Scheme 1). Iodolysis
of 5 produces the expected 8-iodopurine (6a) in 77% yield
(entry 1 of Table 1). Copper(I)-catalyzed allylation12 (5%
CuCN 2LiCl) with 3-bromocyclohexene (-30 to 25 °C, 10 h)
3
leads to the 8-allylated purine (6b) in 91% yield (entry 2).
Pd-catalyzed acylation (2% Pd(PPh3)4)13 with 2-furoyl
chloride (0 to 25 °C, 6 h) gave ketone 6c in 55% yield
(entry 3). Negishi cross-coupling reactions14 with various
Starting from 6-chloropurine, we have prepared the
6-chloro-9-methoxymethyl-2-trimethylsilyl-9H-purine (4)
according to the procedure of Tanaka.10 Thus, this purine
is readily zincated in position 8 by using TMPZnCl LiCl
3
15
aryl iodides using 2% Pd(dba)2 and 4% P(o-furyl)3
afford 8-arylated purines (6d-g) in 72-91% yield
(entries 4-9). An alkynyl group was also introduced via
Sonogashira coupling16 by preparing in situ the iodide 6a.
Its reaction with p-anisylacetylene (1.2 equiv of NEt3, 4%
CuI, 2% Pd(dba)2, 4% P(o-furyl)3, 25 °C, 3 h) provided
the 8-alkynylated purine 6h in 75% yield. The chloro-
substituent in position 6 is then removed by using a
Pd-catalyzed reduction with HCO2NH4 (20 wt % Pd/C,
MeOH/EtOH or MeOH/THF, 45 °C, 15-30 min). Under
(7) (a) Leonard, N. J.; Bryant, D. J. J. Org. Chem. 1979, 44, 4612.
(b) Tanaka, H.; Uchida, Y.; Shinozaki, M.; Hayakawa, H.; Matsuda,
A.; Miyasaka, T. Chem. Pharm. Bull. 1983, 31, 787. (c) Kato, K.;
Hayakawa, H.; Tanaka, H.; Kumamoto, H.; Shindoh, S.; Shuto, S.;
Miyasaka, T. J. Org. Chem. 1997, 62, 6833. (d) Ghosh, A. K.; Lagisetty,
P.; Zajc, B. J. Org. Chem. 2007, 72, 8222.
ꢀꢁ
(8) (a) Tobrman, T.; Dvorak, D. Org. Lett. 2003, 5, 4289.
ꢀꢁ
ꢀ
(b) Tobrman, T.; Dvorak, D. Org. Lett. 2006, 8, 1291. (c) Klecka, M.;
ꢀꢁ
Tobrman, T.; Dvorak, D. Collect. Czech. Chem. Commun. 2006, 71,
1221.
(12) (a) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org.
€
Ed. 1999, 38, 379.
(13) Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F.; Miller, J. A.;
(9) (a) Stevenson, T. M.; Prasad, A. S. B.; Citineni, J. R.; Knochel, P.
Tetrahedron Lett. 1996, 37, 8375. (b) Prasad, A. S. B.; Stevenson, T. M.;
Citineni, J. R.; Nyzam, V.; Knochel, P. Tetrahedron 1997, 53, 7237.
(c) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837.
(10) Kato, K.; Hayakawa, H.; Tanaka, H.; Kumamoto, H.; Miyasaka,
T. Tetrahedron Lett. 1995, 36, 6507.
(11) (a) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837.
(b) Mosrin, M.; Bresser, T.; Knochel, P. Org. Lett. 2009, 11, 3406.
(c) Mosrin, M.; Monzon, G.; Bresser, T.; Knochel, P. Chem. Commun.
2009, 37, 5615. (d) Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. J.
Org. Chem. 2010, 75, 4686. (e) Bresser, T.; Monzon, G.; Mosrin, M.;
Knochel, P. Org. Process Res. Dev. 2010, 14, 1299.
Chem. 1988, 53, 2390. (b) Dubner, F.; Knochel, P. Angew. Chem., Int.
Stoll, A. T. Tetrahedron Lett. 1983, 24, 5181.
(14) (a) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (b) Negishi, E.;
Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298.
(c) Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821.
(15) Farina, V.; Baker, S. R.; Benigni, D. A.; Sapino, C. Tetrahedron
Lett. 1988, 29, 5739.
(16) Sonogashira, K.; Thoda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 4467.
Org. Lett., Vol. 13, No. 4, 2011
793