Since the landmark discovery of Jacobsen in 1998, where
thiourea derivatives catalyzed the asymmetric Strecker
reaction,6 chiral Brønsted acid catalysis has gained much
attention in the field. After the TADDOL-catalyzed het-
ero-Diels-Alder reaction reported by Rawal,7 much
stronger hydrogen bond donors such as phosphoric acids
were found to catalyze Mannich-type reactions.8 A wide
variety of BINOL-derived phosphoric acids have been
developed since then, serving as versatile catalysts to per-
form highly enantioselective organocatalytic transforma-
tions.9
Table 1. Survey of Chiral Phosphoric Acids for the FC Reaction
Numerous protocols for FC reactions to the indole
moiety with electrophiles such as carbonyl compounds,4
R,β-unsaturated carbonyl derivatives,10 imines,4,11 and
nitroolefins12 catalyzed by chiral Brønsted acids are
known. However, to the best of our knowledge, no FC
reactions with trifluoropyruvate-derived imines catalyzed
by chiral BINOL-derived phosphoric acids have been
described. Here, we present an enantioselective aminoalk-
ylation of indole derivatives giving quaternary R-amino
acids in good to excellent yields and high enantio-
selectivities.13
entrya
catalyst
product
yield (%)b
erc
1
2
3
4
5
6
7
8
9
3a
3b
3c
3d
3e
3f
4a
4a
4a
4a
4a
4a
4b
4c
4d
25
16
39
78
37
99
71
96
73
37:63
37:63
30:70
56:44
51:49
96:4
(5) For general reviews on hydrogen bonds, see: (a) Meot-Ner
(Mautner), M. Chem. Rev. 2005, 105, 213. (b) Rozas, I. Phys. Chem.
Chem. Phys. 2007, 9, 2782. Hydrogen Bonding in Organic Synthesis;
Pihko, P., Ed.; Wiley-VCH: Weinheim, 2009. For reviews on hydrogen bond
mediated catalysis, see: (c) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289.
(d) Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L. Angew. Chem., Int. Ed.
2005, 44, 1758. (e) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2006, 45, 1520. (f) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107,
5713. (g) Yu, X.; Wang, W. Chem. Asian J. 2008, 3, 516. (h) Takemoto,
Y. Chem. Pharm. Bull. 2010, 58, 593. (i) Knowles, R. R.; Jacobsen, E. N.
Proc. Natl. Acad. Sci. 2010, 107, 20678. For a special issue on
organocatalysis, see: (j) Chem. Rev. 2007, 107, 5413.
3f
87:13
50:50
91:9
3f
3f
a Reaction conditions: 1a (1 equiv), 2 (1.2 equiv), and 3 (0.06 equiv) in
toluene (0.1 M) at -78 °C for 3 h. b Yield after column chromatography.
c The R:S ratio was determined by HPLC analysis on a chiral stationary
phase.
Initially, we investigated the reaction of indole with N-
Boc-protected 3,3,3-trifluoropyruvate imine14 in the pre-
sence of a chiral phosphoric acid catalyst in toluene (Table 1).
The reaction proceeded at -78 °C and was complete after
3 h.15-17 Catalysts with various substitution patterns on
the 3,30 position of the binaphthyl scaffold were examined
(entries 1-6) and the 2,4,6-triisopropylphenyl-substituted
catalyst (TRIP,15 entry 6) was found to be the best in terms
of yield and enantioselectivity. Substrates with alternative
protecting groups on the imine nitrogen were also tested.
The Cbz-protected imine gave the desired product in good
yield (71%, entry 7), but with only moderate er (87:13).
The imine with a benzoyl protecting group reacted well to
give the quaternary amino acid derivative in high yield
(96%, entry 8) but surprisingly as a racemate. Use of the
methyl imino ester (entry 9) resulted in a lower yield (73%)
and an er of 91:9.
(6) (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120,
4901. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2000, 39, 1279. (c) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc.
2002, 124, 10012.
(7) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature
2003, 424, 146.
(8) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem.,
Int. Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356.
(9) For recent reviews on chiral phosphoric acid catalysis, see: (a)
Terada, M. Synthesis 2010, 1929. (b) Kampen, D.; Reisinger, C. M.; List,
B. Top. Curr. Chem. 2010, 291, 395. (c) Rueping, M.; Koenigs, R. M.;
Atodiresei, I. Chem.;Eur. J. 2010, 16, 9350. (d) Zamfir, A.; Schenker,
S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262.
(10) (a) Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M.
Angew. Chem., Int. Ed. 2008, 47, 593. (b) Tang, H.-Y.; Lu, A.-D.; Zhou,
Z.-H.; Zhao, G.-F.; He, L.-N.; Tang, C.-C. Eur. J. Org. Chem. 2008,
1406. (c) Scettri, A.; Villano, R.; Acocella, M. R. Molecules 2009, 14,
3030. (d) Bachu, P.; Akiyama, T. Chem. Commun. 2010, 46, 4112. (e)
Sakamoto, T.; Itoh, J.; Mori, K.; Akiyama, T. Org. Biomol. Chem. 2010,
8, 5448. (f) Pei, Z.-K.; Zheng, Y.; Nie, J.; Ma, J.-A. Tetrahedron Lett.
2010, 51, 4658.
(11) (a) Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. 2007,
129, 1484. (b) Wanner, M. J.; Hauwert, P.; Schoemaker, H. E.; de
Gelder, R.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem.
2008, 180. (c) Kang, Q.; Zhao, Z.-A.; You, S.-L. Tetrahedron 2009, 65,
1603. (d) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 8156.
€
(14) Burger, K.; Hoss, E.; Gaa, K. Chem. Ztg. 1989, 113, 243.
(15) The free acid catalysts were prepared according to literature
procedures: Klussmann, M.; Ratjen, L.; Hoffmann, S.; Wakchaure, V.;
Goddard, R.; List, B. Synlett 2010, 2189.
(12) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008,
47, 4016.
(16) No reaction was observed in the absence of a chiral phosphoric
acid.
(13) For the first organocatalytic alkylation of ketimines, see: (a)
Zhuang, W.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004,
43, 4476. For a FC reaction of indoles and R-aryl enamides, see: (b) Jia,
Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem.,
Int. Ed. 2007, 46, 5565. For a recent review on organocatalytic
functionalization of indoles, see: (c) Bartoli, G.; Bencivenni, G.; Dalpoz-
zo, R. Chem. Soc. Rev. 2010, 39, 4449.
(17) Special care should be taken in collecting the entire product after
column chromatography because self-disproportionation of enantio-
mers can occur. No such effect was observed upon sublimation under
high vacuum at room temperature. For such phenomena, see: (a)
Soloshonok, V. A. Angew. Chem., Int. Ed. 2006, 45, 766. (b) Soloshonok,
V. A.; Ueki, H.; Yasumoto, M.; Mekala, S.; Hirschi, J. S.; Singleton,
D. A. J. Am. Chem. Soc. 2007, 129, 12112.
Org. Lett., Vol. 13, No. 5, 2011
1045