Article
Organometallics, Vol. 30, No. 4, 2011 677
Scheme 1
Figure 1. ORTEP diagram of 2. Thermal ellipsoids are shown
at the 50% probability level. Hydrogen atoms have been
omitted for clarity. Selected bond lengths (A): Ru(1)-N(1) =
2.190(3), Ru(1)-C(28) = 2.266(4), Ru(1)-C(29) = 2.282(4),
Ru(1)-Ru(3)=2.6466(6), Ru(1)-Ru(2)=2.8939(6), Ru(2)-
Ru(3) = 2.8946(6), Ru(3)-C(28) = 2.123(4), C(28)-C(29) =
1.414(5).
corresponding Ru-Ru distance in complex 1 (2.9393(5) A).
This may be caused by the bridging PhCdCPh ligand. The
C(28)-C(29) distance is 1.414(5) A, longer than the value for a
typical CdC double bond (∼1.34 A). The Ru(1)-C(28) and
Ru(1)-C(29) distances (2.266(4), 2.282(4) A) are much long-
er than the Ru(3)-C(28) distance (2.123(4) A) but much
1
obtained in 64% yield (Scheme 1). Its H NMR spectrum
shows five groups of peaks at 8.52-6.70 ppm for the pyridyl
and benzo protons and one singlet at 5.01 ppm for the C5 ring
proton of indenyl. Single-crystal X-ray diffraction analysis
shows that complex 2 is a triruthenium complex (Figure 1),
and the three Ru atoms bond to each other. The Ru(1)-Ru(3)
distance (2.6466(6) A) is much shorter than those of Ru(1)-
Ru(2) and Ru(2)-Ru(3) (2.8939(6), 2.8946(6) A) and the
shorter than the Ru(3) C(29) distance (3.117 A), indicat-
3 3 3
ing that the PhCdCPh ligand coordinates with Ru(1) in
an η2 mode but with Ru(3) in an η1 mode.
A possible formationmechanismof 2 is shownin Scheme 2.
Diphenylacetylene inserts into the Ru-C(η1) bond first,7 and
then the double bond of the PhCdCPh unit coordinates with
a Ru atom to replace a carbonyl. This may promote the
formation of the third Ru-Ru bond and release of a car-
bonyl to give 2a. 2a and 2 might be transformed into each
other under certain conditions.
(3) (a) Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Chem.
Lett. 1995, 24, 681. (b) Londergan, T. M.; You, Y.; Thompson, M. E.;
Weber, W. P. Macromolecules 1998, 31, 2784. (c) Harris, P. W. R.;
Rickard, C. E. F.; Woodgate, P. D. J. Orgnomet. Chem. 1999, 589, 168.
(d) Kakiuchi, F.; Uetsuhara, T.; Tanaka, Y.; Chatani, N.; Murai, S. J.
Mol. Catal. A 2002, 182-183, 511. (e) Stuart, D. R.; Bertrand-Laperle,
M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.
(4) (a) Satoh, T.; Nishinaka, Y.; Miura, M.; Nomura, M. Chem. Lett.
1999, 28, 615. (b) Shibata, Y.; Otake, Y.; Hirano, M.; Tanaka, K. Org.
Lett. 2009, 11, 689. (c) Wu, J.; Cui, X.; Mi, X.; Li, Y.; Wu, Y. Chem.
Commun. 2010, 46, 6771. (d) Cant, A. A.; Roberts, L.; Greaney, M. F.
Chem. Commun. 2010, 46, 8671. (e) Sun, Z.-M.; Chen, S.-P.; Zhao, P.
Chem. Eur. J. 2010, 16, 2619. (f) Satoh, T.; Miura, M. Chem. Eur. J.
2010, 16, 11212and references therein. (g) Guimond, N.; Gouliaras, C.;
Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (h) Schipper, D. J.;
Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6910. (i)
Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132,
9585. (j) Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565. (k)
Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 14006.
(l) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 18326. (m) Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M.
Org. Lett. 2010, 12, 2068. (n) Liu, C.-R.; Yang, F.-L.; Jin, Y.-Z.; Ma
X.-T.; Cheng, D.-J.; Li, N.; Tian, S.-K. Org. Lett. 2010, 12, 3832. (o) Su,
Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Org. Lett. 2010, 12, 5462.
(5) (a) Lim, Y.-G.; Lee, K.-H.; Koo, B. T.; Kang, J.-B. Tetrahedron
Lett. 2001, 42, 7609. (b) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem.
2007, 72, 5362. (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2008, 130, 3645. (d) Mochida, S.; Hirano, K.; Satoh, T.;
Miura, M. J. Org. Chem. 2009, 74, 6295.
Reaction of 2 with Diphenylacetylene. Complex 2 could
further react with excess diphenylacetylene to give the di-
nuclear and trinuclear complexes {μ2-η1:η5-(C5H4N)(C9H5)-
(PhCdCPh)}Ru2(CO)2(μ2-η2:η4-CPhdCPhCPhdCPh) (3),
(7) For some examples of alkyne insertion into Ru-C bonds, see: (a)
Bruce, M.; Gardner, R. C. F.; Stone, F. G. A. J. Chem. Soc., Dalton
Trans. 1976, 81. (b) Bruce, M. I.; Gardner, R. C. F.; Howard, J. A. K.;
Stone, F. G. A.; Welling, M.; Woodward, P. J. Chem. Soc., Dalton
Trans. 1977, 621. (c) Bruce, M. I.; Gardner, R. C. F.; Stone, F. G. A. J.
Chem. Soc., Dalton Trans. 1979, 906. (d) Lutsenko, Z. L.; Aleksandrov,
G. G.; Petrovskii, P. V.; Shubina, E. S.; Andrianov, V. G.; Struchkov,
Yu. T.; Rubezhov, A. Z. J. Organomet. Chem. 1985, 281, 349. (e) Bruce,
M. I.; Catlaw, A.; Cifuentes, M. P.; Snow, M. R.; Tiekink, E. R. T. J.
Organomet. Chem. 1990, 397, 187. (f) Garn, D.; Knoch, F.; Kish, H. J.
Organomet. Chem. 1993, 444, 155. (g) Abbenhuis, H. C. L.; Pfeffer, M.;
Sutter, J. P.; de Cian, A.; Fischer, J.; Li, Ji, H.; Nelson, J. H. Organo-
metallics 1993, 12, 4464. (h) Barns, R. M.; Hubbard, J. L. J. Am. Chem.
Soc. 1994, 116, 9514. (i) Ferstl, W.; Sakodinskaya, I. K.; Beydoun-
Sutter, N.; Le Borgne, G.; Pfeffer, M.; Ryabov, A. D. Organometallics
1997, 16, 411. (j) Ghosh, K.; Pattanayak, S.; Chakravorty, A. Organo-
metallics 1998, 17, 1956. (k) Ghosh, K.; Chattopadhyay, S.; Pattanayak,
S.; Chakravorty, A. Organometallics 2001, 20, 1419. (l) Cabeza, J. A.; del
ꢀ
Rıo, I.; Grepioni, F.; Moreno, M.; Riera, V.; Suarez, M. Organometal-
´
lics 2001, 20, 4190. (m) Boutadla, Y.; Davies, D. L.; Al-Duaij, O.;
Fawcett, J.; Jones, R. C.; Singh, K. Dalton Trans. 2010, 39, 10447. (n)
Davies, D. L.; Al-Duaij, O.; Fawcett, J.; Singh, K. Organometallics 2010,
29, 1413.
(6) Chen, D.; Zhang, X.; Xu, S.; Song, H.; Wang, B. Organometallics
2010, 29, 3418.