Article
Organometallics, Vol. 30, No. 4, 2011 873
ν(C-H) 2983 (m), ν(CtN) 2210 (s), ν(NdCcarbene, NdC) 1537
(s), 1506 (s), δ(C-H from Ar) 700 (s). 1H NMR (CDCl3, δ): 7.85
(s, 1H, CdNH), 7.30-7.27 (m), 7.24-6.93 (m, 10H, Ph’s), 1.49
(s) and 1.17 (s, 18H, Me’s). 13C{1H} NMR (CDCl3, δ): 190.4
(CdN from carbene), 180.6 (CdNH), 150.9, 146.4, 133.1-122.2
(C and CH from Ph’s), 56.1 and 54.9 (C from But’s), 30.2, 29.7,
29.3, and 29.0 (Me’s).
13. Anal. Calcd for C44H40N6Pt: C, 62.33; H, 4.75; N, 9.91.
Found: C, 62.35; H, 4.72; N, 10.12. HRMS (ESIþ, 70 V,
MeCN): found, 847.2958 [M]þ; calcd for C44H40N6Pd, 847.
2962. IR (KBr, selected bands, cm-1): ν(N-H) 3442 (m),
ν(C-H) 2912 (m), ν(NdCcarbene, NdC) 1641 (s), 1578 (s),
1
δ(C-H from Ar) 782 (s), 740 (s), 688 (s). H NMR (CDCl3,
δ): 8.02 (s, br, 2H, CdNH), 7.62-7.29 (m), 7.22-6.50 (m, 26H,
CdNH, aryls), 2.54 (s) and 2.32 (s, 12H, Me’s). 13C{1H} NMR
(CDCl3, δ): 172.1 (CdN from carbenes), 164.0 (CdNH), 145.5
and 134.7 (C from Ph’s), 132.9-123.5 (C and CH from aryls),
19.6 and 17.6 (Me’s).
Mixture of 26 and 27. Anal. Calcd for C40H44N6Pd: C, 67.17;
H, 6.20; N, 11.75. Found: C, 67.46; H, 6.27; N, 11.58. HRMS
(ESIþ, 105 V, MeCN): found, 714.2648 [M]þ; calcd for
C40H44N6Pd, 714.2662. IR (KBr, selected bands, cm-1): ν(N-
H) 3325 (m), ν(C-H) 2932 (s), ν(NdCcarbene, NdC) 1642 (s),
1585 (s), δ(C-H from Ar) 702 (s). 1H NMR (CDCl3, δ): 7.92 (s,
br, 4H, CdNH), 7.56-7.30 (m), 7.26-6.34 (m, 40H, Ph’s), 5.72
(s, br, 4H, CdNH), 4.32 (s, 2H) and 4.22 (s, 2H, CH), 2.22-1.30
(m, 40H, CH2). 13C{1H} NMR (CDCl3, δ): 178.2 and 171.5
(CdN from carbene), 168.5 and 166.4 (CdNH), 157.8, 152.7,
146.4, 142.3 (C from Ph’s), 134.1-121.2 (Ph’s), 52.4 and 51.0
(CH from Cy’s), 34.8-21.2 (CH2).
Computational Details. The full geometry optimization of all
structures has been carried out at the DFT/HF hybrid level of
theory using Becke’s three-parameter hybrid exchange func-
tional in combination with the gradient-corrected correlation
functional of Lee, Yang, and Parr (B3LYP)66,67 with the help of
the Gaussian-0368 program package. This functional was found
to be a quite reasonable one for the investigation of reactivity,
structural and spectral properties of Pt and Pd complexes with
nitriles and isonitriles.69-72 No symmetry operations have been
applied. The geometry optimization was carried out using a
quasi-relativistic Stuttgart pseudopotential that described 28
core electrons and the appropriate contracted basis set
(8s7p6d)/[6s5p3d]73 for the palladium atom and the 6-31G basis
set for other atoms. Then, single-point calculations were per-
formed on the basis of the equilibrium geometries found using
the 6-31þG(d) basis set for nonmetal atoms. The Hessian matrix
was calculated analytically in order to prove the location of
correct minima (no imaginary frequencies) and to estimate the
thermodynamic parameters, the latter being calculated at 25 ꢀC.
17. Anal. Calcd for C23H29N4ClPt: C, 46.68; H, 4.94; N, 9.47.
Found: C, 47.05; H, 5.14; N, 9.16. HRMS (ESIþ, 70 V, MeCN):
found, 557.2376 [M - Cl]þ; calcd for C23H30N4ClPt, 557.2142.
IR (KBr, selected bands, cm-1): ν(N-H) 3445 (m), ν(C-H)
2978 (m), 2931 (m), ν(CtN) 2199 (s), ν(NdCcarbene, NdC) 1625
(s), 1519 (s), δ(C-H from Ph) 696 (s). 1H NMR (CDCl3, δ): 7.88
(s, 1H, CdNH), 7.14-6.64 (m, 10H, Ph’s), 1.62 (s) and 1.55 (s,
18H, Me’s). 13C{1H} NMR (CDCl3, δ): 180.6 (CdN from car-
bene), 162.7 (CdNH), 150.9 and 146.5 (C from Ph’s), 130.7-122.9
(CH from Ph’s), 30.3, 29.7, 29.3, and 29.1 (C from But’s).
Mixture of 22 and 24. Anal. Calcd for C27H33N4ClPd: C,
58.46; H, 6.00; N, 10.10. Found: C, 58.64; H, 6.17; N, 10.03.
HRMS (ESIþ, 105 V, MeCN): found, 557.1547 [M]þ; calcd for
C27H33N4ClPd, 557.1522. IR (KBr, selected bands, cm-1):
ν(N-H) 3331 (m), ν(C-H) 2929 (s), 2853 (s), ν(CtN) 2221
(s), ν(NdCcarbene, NdC) 1628 (s), 1593 (s), δ(C-H from Ar) 694
(s). 1H NMR (CDCl3, δ): 7.88 (s, 1H, CdNH), 7.54-7.31 (m),
7.23-6.24 (m, 20H, Ph’s), 5.75 (s, 1H, CdNH), 4.23 (m, 2H),
4.02 (m, 1H), 3.46 (m, 1H, CH), 2.15-1.20 (m, 40H, CH2).
13C{1H} NMR (CDCl3, δ): 181.2 and 179.8 (CdN from
carbene), 169.5 and 165.2 (CdNH), 157.6, 150.8, 146.4 (C from
Ph’s), 133.1-121.7 (Ph’s), 54.9, 54.7, 53.2, 52.4 (CH from Cy’s),
33.9-14.2 (CH2).
Mixture of 23 and 25. Anal. Calcd for C27H33N4ClPt: C,
50.37; H, 5.17; N, 8.71. Found: C, 50.18; H, 5.42; N, 8.92.
HRMS (ESIþ, 105 V, MeCN): found, 608.2477 [M - Cl]þ; calcd
for C27H33N4Pt, 608.2377. IR (KBr, selected bands, cm-1):
ν(N-H) 3428 (m), ν(C-H) 2928-2853 (s), ν(CtN) 2212 (s),
ν(NdCcarbene, NdC) 1620 (s), 1569 (s), δ(C-H from Ar) 693 (s).
1H NMR (CDCl3, δ): 7.87 (s, br, 1H, CdNH from carbene),
7.54-7.29 (m), 7.24-6.52 (m), 6.30 (d 20H, Ph’s), 4.28 (m) and
4.00-3.42 (m, 4H, CH), 2.15-1.17 (m, 40H, CH2); HNdC(Ph)
is not resolved. 13C{1H} NMR (CDCl3, δ): 182.0 and 169.6
(CdN from carbene), 165.2 and 164.1 (CdNH), 148.5 and 141.3
(C from Ph’s), 130.8-123.8 (Ph’s), 55.1, 54.8, 52.7, and 52.9 (CH
from Cy’s), 33.9-14.2 (CH2).
General Procedure for the Reaction between cis-[MCl2-
(CtNR)2] (1-6) and HN=C(Ph)NHPh (4 equiv). Solid 7
(0.100 g, 0.510 mmol) was added to a solution (R=Cy, But)
or a suspension (R=Xyl) of cis-[MCl2(RNC)2] (0.127 mmol) in
CHCl3 (3 mL). The reaction mixture was then refluxed for ca. 8 h
under vigorous stirring. During the reaction time, the color of
the mixture turned from light orange to bright yellow and then
to dark yellow. After 8 h, the reaction mixture was filtered off
(66) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
(67) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785–789.
(68) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, J., T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,
O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
Gonzalez, C.; Pople, J. A., Gaussian 03, revision C.02; Gaussian, Inc.:
Wallingford CT, 2004.
from the released 7 HCl and then evaporated to dryness at
3
90 ꢀC, and the solid residue was extracted with two 5 mL por-
tions of CH2Cl2. The dark yellow solution was filtered off to
remove some insoluble material, the filtrate was evaporated to
dryness at room temperature, washed with five 1 mL of cold
(5 ꢀC) Et2O, and dried in air at 20-25 ꢀC. Yields were 45-65%,
based on the metal.
12. Anal. Calcd for C44H40N6Pd: C, 69.63; H, 5.31; N, 11.08.
Found: C, 70.05; H, 5.22; N, 11.04. HRMS (ESIþ, 70 V,
MeCN): found, 759.2383 [M]þ; calcd for C44H40N6Pd, 759.-
2443. IR (KBr, selected bands, cm-1): ν(N-H) 3455 (m), ν(C-
H) 2917 (m), ν(NdCcarbene, NdC) 1633 (s), 1589 (s), δ(C-H
from Ar) 777 (s), 749 (s), 697 (s). 1H NMR (CDCl3, δ): 7.97 (s,
br, 2H, CdNH), 7.70-7.28 (m), 7.23-6.57 (m, 26H, CdNH,
aryls), 2.56 (s) and 2.37 (s, 12H, Me’s). 13C{1H} NMR (CDCl3,
δ): 171.2 (CdN from carbenes), 163.4 (CdNH), 145.3, 134.3 (C
from Ph’s), 131.8-122.5 (C and CH from aryls), 19.4 and
18.6 (Me’s).
(69) Kuznetsov, M. L.; Kukushkin, V. Y.; Pombeiro, A. J. L. Dalton
Trans 2008, 1312–1322.
(70) Menezes, F. M. C.; Kuznetsov, M. L.; Pombeiro, A. J. L.
Organometallics 2009, 28, 6593–6602.
(71) Kuznetsov, M. L.; Kukushkin, V. Y.; Pombeiro, A. J. L. J. Org.
Chem. 2010, 75, 1474–1490.
(72) Kuznetsov, M. L.; Nazarov, A. A.; Kozlova, L. V.; Kukushkin,
V. Y. J. Org. Chem. 2007, 72, 4475–4478.
(73) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.
Theor. Chim. Acta 1990, 77, 123–141.