ACS Catalysis
Research Article
Sayalero, S.; Bahramnejad, M.; Cuevas, F.; Pericas
̀
, M. A. Chem.−Eur. J.
, M.
Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007,
107, 2300−2318. (e) Bedore, M. W.; Zaborenko, N.; Jensen, K. F.;
Jamison, T. F. Org. Process Res. Dev. 2010, 14, 432−440. (f) Noel, T.;
Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010−5029. (g) Zhao, D.;
Ding, K. ACS Catal. 2013, 3, 928−944. (h) Puglisi, A.; Benaglia, M.;
Chiroli, V. Green Chem. 2013, 15, 1790−1813. (i) Tsubogo, T.;
Ishiwata, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2013, 52, 6590−
6604. (j) Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013,
42, 8849−8869. (k) Wiles, C.; Watts, P. Green Chem. 2014, 16, 55−62.
(16) For some examples of asymmetric continuous flow processes
with immobilized catalysts, see: (a) Alza, E.; Sayalero, S.; Cambeiro, X.
2011, 17, 8780−8783. (d) Martín-Rapun, R.; Sayalero, S.; Pericas
̀
́
A. Green Chem. 2013, 15, 3295−3301.
(7) (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96,
835−876. (b) Bergmeier, S. C. Tetrahedron 2000, 56, 2561−2576.
(8) For primary α-amino acid derived catalysts, see: (a) Ibrahem, I.;
́
Zou, W.; Engqvist, M.; Xu, Y.; Cordova, A. Chem.−Eur. J. 2005, 11,
7024−7029. (b) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas,
C. F., III J. Am. Chem. Soc. 2007, 129, 288−289. (c) Cheng, L.; Wu, X.;
Lu, Y. Org. Biomol. Chem. 2007, 5, 1018−1020. (d) Cheng, L.; Han,
X.; Huang, H.; Wong, M. W.; Lu, Y. Chem. Commun. 2007, 4143−
4145. (e) Xu, L.-W.; Lu, Y. Org. Biomol. Chem. 2008, 6, 2047−2053.
(f) Zhang, H.; Ramasastry, S. S. V.; Tanaka, F.; Barbas, C. F., III Adv.
Synth. Catal. 2008, 350, 791−796. (g) Teo, Y.-C.; Lau, J.-J.; Wu, M.-C.
Tetrahedron: Asymmetry 2008, 19, 186−190. (h) Fu, A.; Li, H.; Si, H.;
Yuan, S.; Duan, Y. Tetrahedron: Asymmetry 2008, 19, 2285−2292.
C.; Martín-Rapun, R.; Miranda, P. O.; Pericas
̀
, M. A. Synlett 2011,
́
464−468. (b) Cambeiro, X. C.; Martín-Rapun, R.; Miranda, P. O.;
́
Sayalero, S.; Alza, E.; Llanes, P.; Pericas
2011, 7, 1486−1493. (c) Ayats, C.; Henseler, H. A.; Pericas
ChemSusChem 2012, 5, 320−325. (d) Osorio-Planes, L.; Rodríguez-
Escrich, C.; Pericas, M. A. Org. Lett. 2012, 14, 1816−1819. (e) Fan, X.;
Sayalero, S.; Pericas, M. A. Adv. Synth. Catal. 2012, 354, 2971−2976.
(f) Kasaplar, P.; Rodríguez-Escrich, C.; Pericas, M. A. Org. Lett. 2013,
15, 3498−3501. (g) Osorio-Planes, L.; Rodríguez-Escrich, C.; Pericas
̀
, M. A. Beilstein J. Org. Chem.
̀
, M. A.
̀
́
(i) Dziedzic, P.; Ibrahem, I.; Cordova, A. Tetrahedron Lett. 2008, 49,
̀
803−807. (j) Wu, C.; Fu, X.; Ma, X.; Li, S.; Li, C. Tetrahedron Lett.
2010, 51, 5775−5777. (k) Wu, C.; Fu, X.; Li, S. Tetrahedron:
Asymmetry 2011, 22, 1063−1073. (l) An, Y.; Qin, Q.; Wang, C.; Tao,
J. Chin. J. Chem. 2011, 29, 1511−1517. (m) Yong, F.-F.; Teo, Y.-C.
Synth. Commun. 2011, 41, 1293−1300. (n) Nugent, T. C.; Sadiq, A.;
Bibi, A.; Heine, T.; Zeonjuk, L. L.; Vankova, N.; Bassil, B. S. Chem.−
Eur. J. 2012, 18, 4088−4098.
̀
̀
,
M. A. Chem.−Eur. J. 2014, 20, 2367−2372.
(17) Gawande, M. B.; Velhinho, A.; Nogueira, I. D.; Ghumman, C. A.
A.; Teodoro, O. M. N. D.; Branco, P. S. RSC Adv. 2012, 2, 6144−
6149.
(18) Switches regarding the diastereoselectivity using different
primary amino acid derivatives have been observed previously. See
ref 8c.
(19) When 1,3-dihydroxyacetone is used as a donor in the reaction,
the commercially available dimer is employed in combination with a
catalytic amount of acetic acid (10 mol%). The role of the acetic acid is
to catalyze the in situ conversion of the dimer into the reacting
monomer. See ref 8i.
(20) (a) Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005,
44, 4077−4079. (b) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G.
Angew. Chem., Int. Ed. 2005, 44, 4079−4083.
(21) Rueping, M.; Bootwicha, T.; Sugiono, E. Beilstein J. Org. Chem.
2012, 8, 300−307.
(9) For primary β-amino acid derived catalysts, see: Dziedzic, P.;
Cor
(10) For selected examples, see: (a) Bassan, A.; Zou, W.; Reyes, E.;
Himo, F.; Cordova, A. Angew. Chem., Int. Ed. 2005, 44, 7028−7032.
(b) Cordova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao,
́
dova, A. Tetrahedron: Asymmetry 2007, 18, 1033−1037.
́
́
W.-W. Chem. Commun. 2005, 3586−3588. (c) Jiang, Z. Q.; Liang, Z.;
Wu, X. Y.; Lu, Y. X. Chem. Commun. 2006, 2801−2803.
(d) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.; Tanaka, F.;
Barbas, C. F., III Angew. Chem., Int. Ed. 2007, 46, 5572−5575.
(e) Utsumi, N.; Imai, M.; Tanaka, F.; Ramasastry, S. S. V.; Barbas, C.
F., III Org. Lett. 2007, 9, 3445−3448. (f) Khan, S. S.; Shah, J.;
Liebscher, J. Tetrahedron 2010, 66, 5082−5088. (g) Jiang, Z. Q.; Yang,
H.; Han, X.; Luo, J.; Wong, M. W.; Lu, Y. X. Org. Biomol. Chem. 2010,
8, 1368−1377. (h) Wu, C.; Fu, X.; Li, S. Eur. J. Org. Chem. 2011,
1291−1299. (i) Wu, C.; Long, X.; Li, S.; Fu, X. Tetrahedron:
(22) The residence time was determined by pumping a solution of
methyl red through the system and measuring the time elapsed
between the first contact of the dye with the resin and the moment
when red color appeared at the column output.
Asymmetry 2012, 23, 315−328. (j) Henseler, A. H.; Ayats, C.; Pericas
M. A. Adv. Synth. Catal. 2014, 356, 1795−1802.
(11) (a) Sato, A.; Yoshida, M.; Hara, S. Chem. Commun. 2008, 6242−
6244. (b) Yoshida, M.; Narita, M.; Hirama, K.; Hara, S. Tetrahedron
Lett. 2009, 50, 7297−7299. (c) Yoshida, M.; Sato, A.; Hara, S. Org.
Biomol. Chem. 2010, 8, 3031−3036. (d) Yoshida, M.; Kitamikado, N.;
Ikehara, H.; Hara, S. J. Org. Chem. 2011, 76, 2305−2309.
(12) Fu, J.-Y.; Yang, Q.-C.; Wang, Q.-L.; Ming, J.-N.; Wang, F.-Y.;
Xu, X.-Y.; Wang, L.-X. J. Org. Chem. 2011, 76, 4661−4664.
(13) Liu, X.; Qin, B.; Zhou, X.; He, B.; Feng, X. J. Am. Chem. Soc.
2005, 127, 12224−12225.
(14) (a) Blaser, H.-U., Pugin, B.; Studer, M. In Chiral Catalyst
Immobilization and Recycling; De Vos, D. E., Vankelecom, I. F. J.,
Jacobs, P. A., Eds.; Wiley-VCH: Weinheim, 2000; pp 1−17. (b) Cozzi,
F. Adv. Synth. Catal. 2006, 348, 1367−1390. (c) Wang, Z.; Ding, K.,
Uozumi, Y. In Handbook of Asymmetric Heterogeneous Catalysis; Ding,
K.; Uozumi, Y., Eds.; Willey-VCH: Weinheim, 2008; pp 1−23.
(d) Gruttadauria, M.; Giacalone, F.; Noto, R. Chem. Soc. Rev. 2008, 37,
1666−1688. (e) Lu, J.; Toy, P. H. Chem. Rev. 2009, 109, 815−838.
(f) Zhao, G.; Chai, Z. In Recoverable and Recyclable Catalysts; Benaglia,
M., Ed.; Wiley, Chichester, 2009; pp 49−75. (g) Kristensen, T. E.;
Hansen, T. Eur. J. Org. Chem. 2010, 3179−3204.
̀
,
(23) The use of continuous flow conditions for 6 hours results in a
turnover number (TON) of 10 (referred to the product formed) and a
productivity of 1.7 mmolproduct·mmolresin−1·h−1.
(24) A flow rate of 50 μL·min−1 was used (equivalent to 10 min
residence time).
(25) The use of continuous flow conditions results a turnover
number (TON) of 9 (referred to the product formed) and a
productivity of 2.2 mmolproduct·mmolresin−1·h−1.
(26) The turnover number (TON) for the synthesis of compounds
10 and 19 under batch conditions was 4.5 (referred to the product
formed).
(15) For recent examples, see: (a) Kirschning, A.; Jas, G. In
Immobilized Catalysts; Kirschning, A., Ed.; Topics in Current
Chemistry; Springer: Berlin, Heidelberg, 2004; Vol 242, pp 210−
239. (b) Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.;
Saaby, S.; Tranmer, G. K. Chem. Commun. 2006, 24, 2566−2568.
(c) Baxendale, I. R.; Ley, S. V. In New Avenues to Efficient Chemical
Synthesis: Emerging Technologies; Seeberger, P. H.; Blume, T., Eds.;
Springer, Berlin, 2007; pp 151−185. (d) Mason, B. P.; Price, K. E.;
3033
dx.doi.org/10.1021/cs5006037 | ACS Catal. 2014, 4, 3027−3033