A. Nefzi, J. E. Fenwick / Tetrahedron Letters 52 (2011) 817–819
819
Roedern, E. G. V.; Lohof, E.; Hessler, G.; Hoffmann, M.; Kessler, H. J. Am. Chem.
Soc. 1996, 118, 10156–10167.
13. Schmidt, J.; Garambois, V.; Rocheblave, L.; Martinez, J.; Pelegrin, A.; Cavelier, F.;
Vives, E. ChemBioChem 2010, 11, 1083–1092.
14. (a) Chaleix, V.; Sol, V.; Guilloton, M.; Granet, R.; Krausz, P. Tetrahedron Lett.
2004, 45, 5295–5299; (b) Leßmann, L.; Waldmann, H. Chem. Commun. 2006,
3380–3389.
15. (a) Colombo, M.; Bianchi, A. Molecules 2010, 15, 178–197; (b) Dijkgraaf, I.;
Rijnders, A. Y.; Soede, A.; Dechesne, A. C.; van Esse, G. W.; Brouwer, A. J.;
Corstens, F. H. M.; Boerman, O. C.; Rijkers, D. T. S.; Liskamp, R. M. J. Org. Biomol.
Chem. 2007, 5, 935–944.
16. (a) Feng, Y.; Pattarawarapan, M.; Wang, Z.; Burgess, K. Org. Lett. 1999, 1, 121;
(b) Roberts, K. D.; Lambert, J. N.; Ede, N. J.; Bray, A. M. J. Pept. Sci. 2006, 12, 525–
532; (c) Ede, N. J.; Poberts, K. D. J. Pept. Sci. 2007, 13, 811–821.
17. (a) Jung, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 1051–1068; (b) Campiglia, P.;
Gomez-Monterrey, I.; Longobardo, L.; Lama, T.; Novellino, E.; Grieco, P.
Tetrahedron Lett. 2004, 45, 1453–1456; (c) Jack, R. W.; Jung, G. Curr. Opin.
Chem. Biol. 2000, 4, 310–317; (d) Kaiser, D.; Jack, R. W.; Jung, G. Pure Appl.
Chem. 1998, 70, 97–104.
18. Crescenza, A.; Botta, M.; Corelli, F.; Santini, A.; Tafi, A. J. Org. Chem. 1999, 64,
3019–3025.
19. Aimetti; A, A.; Shoemaker, R. K.; Linc, C.-C.; Anseth, K. S. Chem. Commun.
(Camb.) 2010, 46, 4061–4063.
20. Fields, G. B.; Noble, R. L. Int. J. Pept. Protein Res. 1990, 35, 161–214.
21. (a) Hantzsch, A. R.; Weber, J. H. Ber. 1887, 20, 3118–3132; (b) Garcia-Egido, E.;
Wong, S. Y. F.; Warrington, B. H. Lab Chip 2002, 2, 31–33; (c) Lin, P. Y.; Hou, R.
S.; Wang, H. M.; Kang, I. J.; Chen, L. C. J. Chin. Chem. Soc. 2009, 56, 455–458; (d)
Kearney, P. C.; Fernandez, M.; Flygare, J. A. J. Org. Chem. 1998, 63, 196–200; (e)
Arutyunyan, S.; Nefzi, A. J. Comb. Chem. 2010, 12, 315–317.
22. General procedure for the solid-phase synthesis of cyclic peptide 5a: One bag of
resin 1 (100 mg, 0.115 mmol) was put into a small polyethylene bottle and the
Fmoc group was deprotected with 15 mL of a solution of 20% piperidine in DMF
(2 Â 10 min). The resin was then washed with 15 mL DMF (3Â) and 15 mL
DCM (3Â).
L-Fmoc-Asp(Bzl)-OH (6 equiv, 0.307 g, 0.69 mmol) was coupled in
the presence of hydroxybenzotriazole (HOBt, 6 equiv, 0.094 g, 0.69 mmol) and
diisopropylcarbodiimide (DIC, 6 equiv, 0.101 mL, 0.69 mmol) in 15 mL
anhydrous DMF for 2 h at room temperature. The resin-bound dipeptide was
washed with DMF (3Â) and DCM (3Â). Completion of the coupling was
monitored by the ninhydrin test. The Fmoc group was deprotected with 15 mL
20% piperidine in DMF (2 Â 10 min) and followed by the coupling of
Gly-OH (6 equiv, 0.205 g, 0.69 mmol) using the same reaction conditions. The
Fmoc group was deprotected and the resin-bound tripeptide was coupled to
L-Fmoc-
L-
Fmoc-Arg(Pmc)-OH (6 equiv, 0.457 g, 0.69 mmol) in the same conditions to
yield following Fmoc deprotection the corresponding resin-bound protected
linear peptide 2a. The resulting N-terminal free amine of resin-bound linear
peptide 2a was treated with Fmoc-isothiocyanate (6 equiv, 0.193 g,
11.04 mmol) in 15 mL DMF anhydrous overnight at room temperature.
Following Fmoc deprotection with a solution of 20% piperidine in DMF, the
resin-bound N-terminal thiourea was treated with 1,3-dichloroacetone
(10 equiv, 0.145 g, 18.4 mmol) in DMF anhydrous overnight at 70 °C to afford
following Hantzsch’s cyclocondensation the resulting resin-bound chloro
methyl thiazolyl peptide 4a. The Trt group was removed in the presence of
TFA/(But)3SiH/DCM (5:5:90) for 30 min. The resin was washed with DCM (5Â)
and DIEA/DCM (5:95) and was treated overnight with a solution of Cs2CO3
(10 equiv, 0.325 g) in 15 mL DMF at room temperature to undergo an SN2
intramolecular thioalkylation. The resin was treated with HF/anisole for
90 min at 0 °C, and the desired thiazolyl thioether cyclic peptides 5a was
obtained following extraction with 95% acetic acid in water and lyophilization
as a white powder (61.9 mg). The cyclic peptide 5a was purified by preparative
reverse-phase HPLC. Compound 5a: 1H NMR (500 MHz, DMSO-d6). d ppm 8.78
(br s, 1H), 8.37 (br s, 1H), 8.30 (br s, 1H), 7.42 (br s, 1H), 7.32 (s, 1H), 7.09 (s,
1H), 6.41 (s, 1H), 4.47 (dd, J = 13.3 Hz, J = 5.5 Hz, 1H), 4.12 (dd, J = 12.7 Hz,
J = 7.6 Hz, 1H), 3.93 (m, 2H), 3.64 (d, J = 13.3 Hz, 1H), 3.53 (d, J = 13.5 Hz, 1H),
3.14 (m, 1H), 3.05 (dd, J = 13.6 Hz, J = 8.6 Hz, 1H), 2.97 (m, 1H), 2.84 (dd,
J = 13.6 Hz, J = 4.7 Hz 1H), 2.38 (m, 2H), 2.02 (m, 1H), 1.88 (m, 1H), 1.51 (m, 2H).