252
P.A. Ajibade et al. / Polyhedron 30 (2011) 246–252
with perfect alignment of the atoms. The zinc complex produced
stacks of concentric ZnS particles, which are highly crystalline with
concentric lattice planes (Fig. 6) and with particle sizes in the range
63–91 nm and d-lattice spacings of 2.27 nm. The powder X-ray dif-
fraction patterns for the nanoparticles prepared from the com-
plexes are shown in Figs. 7–9. ZnS nanoparticles show the
predominant 1 1 1 plane of the cubic phase on their XRD pattern.
The cadmium complex produced growth of particles in the hexag-
onal phase with XRD patterns indexed to 1 1 1, 2 0 0, 2 2 0, 3 1 1
and 4 0 0 for the peaks with 2h values of 25.9, 29.5, 43.1 and
51.1, respectively. The peaks are broad, indicative of nanoscale par-
ticles. HgS nanoparticles gave crystalline particles with predomi-
nant peaks at 25.9, 29.5, 43.1 and 51.1 indexed to 1 1 1, 2 0 0,
2 2 0 and 3 1 1, respectively.
The complexes used to prepare these nanoparticles have similar
ligand features, such as the alkyl group used – ethyl and methyl,
and the corresponding phenyl substituent which influences the
formation of needle-like, oval and concentric particles for the cad-
mium and mercury and the zinc complexes, respectively. Memon
et al. [34] reported the synthesis of ZnS and CdS using bis(dode-
cyl)dithiocarbamate cadmium and zinc complexes, which pro-
duced rods and tetrapods at higher temperatures than 120 °C
used in this work, while the morphologies are similar with differ-
ent particles sizes.
XRD, TEM and HRTEM images from the CSIR, NCNSM, 1-Meiring
Naude, Brummeria, 0001.
References
[1] L.I. Victoriano, Polyhedron 19 (2000) 2269.
[2] S. Thirumaran, V. Venkatachalam, A. Manohar, K. Ramalingam, G. Bocelli, A.
Cantoni, J. Coord. Chem. 44 (1998) 281.
[3] J. Stary, K. Kratzer, J. Radioanal. Nucl. Chem. Lett. 165 (1992) 137.
[4] Y.E. Pazukhina, N.V. Isakova, V. Nagy, O.M. Petrukhin, Solvent Extr. Ion Exch. 15
(1997) 777.
[5] L. Monser, N. Adhoum, Sep. Purif. Technol. 26 (2002) 137.
[6] E.I. Stiefel, K. Matsumoto, in: Transition Metal Sulfur Chemistry ACS
Symposium Series, vol. 653, American Chemical Society, Washington, DC,
1995, p. 2.
[7] F. Caruso, M.L. Chan, M. Rossi, Inorg. Chem. 36 (1997) 3609.
[8] D. Coucouvanis, Prog. Inorg. Chem. 26 (1979) 301.
[9] G. Hogarth, Prog. Inorg. Chem. 53 (2005) 71.
[10] J.J. Steggerda, J.A. Cras, J. Willemse, Rec. Trav. Chim. 100 (1981) 41.
[11] D.P. Dutta, V.K. Jain, A. Knoedler, W. Kaim, Polyhedron 21 (2002) 239.
[12] N. Srinivasan, P. Jamuna Rani, S. Thirumaran, J. Coord. Chem. 62 (2009) 1271.
[13] D. Fan, M. Afzaal, M.A. Malik, C.Q. Nguyen, P. O’Brien, P.J. Thomas, Coord.
Chem. Rev. 251 (2007) 1878.
[14] R. Romano, O.L. Alves, Mater. Res. Bull. 41 (2006) 376.
[15] R.D. Pike, H. Cui, R. Kershaw, K. Dwight, A. Wold, T.N. Blanton, A.A. Wernberg,
H.J. Gysling, Thin Solid Films 224 (1993) 221.
[16] T. Trindade, P. O’Brien, Xiao-mei Zhang, Chem. Mater. 9 (1997) 523.
[17] M. Green, P. O’Brien, Adv. Mater. Opt. Electron. 7 (1997) 277.
[18] B. Ludolph, M.A. Malik, P. O’Brien, N. Revaprasadu, Chem. Commun. (1998)
1849.
[19] N.L. Pickett, P. O’Brien, Chem. Rec. 1 (2001) 467.
[20] M. Green, P. Prince, M. Gardener, J. Steed, Adv. Mater. 16 (2004) 994.
[21] N. Manav, A.K. Mishra, N.K. Kaushik, Spectrochim. Acta A 65 (2006) 33.
[22] Thirumram, K. Ramalingam, G. Bocelli, A. Cantoni, Polyhedron 19 (2000) 1279.
[23] M. Bonamico, G. Mazzone, A. Vaciago, I. Zambonelli, Acta Crystallogr. 19
(1965) 898.
[24] S.K. Jha, B.H.S. Thimmappa, P. Mathur, Polyhedron 5 (1986) 2123.
[25] S.A.A. Nami, K.S. Siddiqi, Synth. React. Inorg., Met.-Org. Chem. 34 (2004) 1583.
[26] B.W. Wenclawiak, S. Uttich, H.J. Deiseroth, D. Schmitz, Inorg. Chim. Acta 3
(2003) 348.
[27] L. Ronconi, L. Giovagnini, C. Marzano, F. Bettio, R. Graziani, G. Pilloni, D.
Fregona, Inorg. Chem. 44 (2005) 1874.
[28] M. Sarwar, S. Ahmad, S. Ahmad, S. Ali, S.A. Awan, Transition Met. Chem. 32
(2007) 200.
[29] F. Bensebaa, Y. Zhou, A.G. Brolo, D.E. Irish, Y. Deslandes, E. Kruus, T.H. Ellis,
Spectrochim. Acta A 55 (1999) 1229.
[30] B.A. Prakasam, K. Ramalingam, G. Bocelli, A. Cantoni, Polyhedron 26 (2007)
4491.
[31] G. Hogarth, C. Ebony-Jewel, R.C.R. Rainford-Brent, S.E. Kabir, I. Richards, J.D.E.T.
Wilton-Ely, Q. Zhang, Inorg. Chim. Acta 362 (2009) 2021.
[32] N. Srinivasan, S. Thirumaran, S. Ciattini, J. Mol. Struct. 938 (2009) 234.
[33] S.P. Sovilj, G. Vukovi, K. Babic, T.J. Sabo, S. Macura, N. Juranic, J. Coord. Chem.
41 (1997) 25.
4. Conclusion
Zn(II), Cd(II) and Hg(II) complexes of N,N-methyl phenyl-N,N-
ethyl phenyl dithiocarbamate complexes have been prepared and
characterized by elemental analyses and spectroscopic techniques.
Four coordinate geometries are proposed for the complexes. The
complexes were used as a single source precursor to synthesise
ZnS, CdS and HgS semiconductor nanoparticles. The nanoparticles
showed a blue shift in their absorption band edges, and emissions
which are red shifted. The alkyl and phenyl substituents appear to
influence the overall shape of the particles. The mercury complex
was effective as a precursor to produce particles of uniform size
that are highly crystalline, hexagonal and cubic phases with one
predominant 1 1 1 plane, driven by hexadecylamine.
Acknowledgements
[34] R.J. Anderson, D.J. Bendell, P.W. Groundwater, Organic Spectroscopic Analysis,
RSC, Cambridge, 2004. p. 91.
[35] M. Grenier-Loustalot, L. Da Cunha, Eur. Polym. J. 34 (1998) 98.
[36] A.A. Memon, M. Afzaal, M.A. Malik, C.Q. Nguyen, P. O’Brien, J. Raftery, J. Chem.
Soc., Dalton Trans. (2006) 4499.
[37] T. Mthethwa, S.R.R. Pullabhotla, P.S. Mdluli, J. Wesley-Smith, N. Revaprasadu,
Polyhedron 9 (2009) 2977.
The authors are grateful to GMRDC, University of Fort Hare,
South Africa for financial support and the University of Witwaters-
rand for providing space for the preparation of the nanoparticles.
Special mention goes to Mr. Siya Mpelane who helped with the