Please do not adjust margins
Dalton Transactions
Page 10 of 12
ARTICLE
Journal Name
21 J. J. Warren and J. M. Mayer, J. Am. Chem. Soc., 2008, 130,
22 J. P. Roth and J. M. Mayer, Inorg. Chem., 1999, 38, 2760–2761. 39 W. S. Matthews, J. E. Bares, J. E. BartmDeOssI:, 1F0..G10.3B9o/Cr8dDwTe0l4l,6F8.9JA.
Chem. Res., 2018, 51, 2391–2399.
2774–2776.
23 (a) I. Pappas and P. J. Chirik, J. Am. Chem. Soc., 2015, 137,
3498–3501; (b) I. Pappas and P. J. Chirik, J. Am. Chem. Soc.,
2016, 138, 13379–13389; (c) M. J. Bezdek, S. Guo and P. J.
Cornforth, G. E. Drucker, Z. Margolin, R. J. McCallum, G. J.
McCollum and N. R. Vanier, J. Am. Chem. Soc., 1975, 97, 7006–
7014.
Chirik, Science, 2016, 354, 730–733; (d) G. W. Margulieux, M. 40 F. G. Bordwell and W.-Z. Liu, J. Am. Chem. Soc., 1996, 118,
J. Bezdek, Z. R. Turner and P. J. Chirik, J. Am. Chem. Soc., 2017,
139, 6110–6113.
8777–8781.
41 To avoid this latter undesired ligand exchange process
involving the chloride anion, we also measured the
corresponding complex derived from the chloride-SbF6
exchange possessing a less coordinative counteranion. As
expected, this dicationic complex showed a lower pKa value
(24.0). This variation in only three units of pKa seems
reasonable taking into account the low Lewis acidity expected
for Fe(II) complexes. Nevertheless, we were unable to obtain
the corresponding single crystal X-ray structure of such
complex and this result must be only considered under this
perspective.
24 In case of missing BDFE values, they have been recalculated
using ref. 1: (a) F. G. Bordwell, J. A. Harrelson and T.-Y. Lynch,
J. Org. Chem., 1990, 55, 3337–3341; (b) F. G. Bordwell and G.-
Z. Ji, J. Am. Chem. Soc., 1991, 113, 8398–8401; (c) F. G.
Bordwell, S. Zhang, X.-M. Zhang and W.-Z. Liu, J. Am. Chem.
Soc., 1995, 117, 7092–7096; (d) J.-P. Cheng and Y. Zhao,
Tetrahedron, 1993, 49, 5267–5276; (e) J. R. B. Gomes, M. D.
M. C. Ribeiro da Silva and M. A. V. Ribeiro da Silva, J. Phys.
Chem. A, 2004, 108, 2119–2130.
25 (a) N. Kindermann, C. J. Günes, S. Dechert and F. Meyer, J. Am.
Chem. Soc., 2017, 139, 9831–9834; (b) G. Ali, P. E. VanNatta, 42 This pKa decrease was also observed when less coordinating
D. A. Ramirez, K. M. Light and M. T. Kieber-Emmons, J. Am.
Chem. Soc., 2017, 139, 18448–18451; (c) D. Dhar, G. M. Yee,
A. D. Spaeth, D. W. Boyce, H. Zhang, B. Dereli, C. J. Cramer and
W. B. Tolman, J. Am. Chem. Soc., 2016, 138, 356–368; (d) D.
Dhar and W. B. Tolman, J. Am. Chem. Soc., 2015, 137, 1322–
1329.
counter ions were present. In fact, complex derived from the
chloride-SbF6 exchange showed a pKa value of 22.6. Again, we
were unable to obtain the corresponding single crystal X-ray
structure of such complex and this result must be only
considered under this perspective.
43 R. L. Birke, C. Shi, W. Zhang and J. R. Lombardi, J. Phys. Chem.
B, 1998, 102, 7983–7996.
26 (a) C. R. Goldsmith, R. T. Jonas and T. D. P. Stack, J. Am. Chem.
Soc., 2002, 124, 83–96; (b) C. R. Goldsmith and T. D. P. Stack, 44 L. S. Morris, M. P. Girouard, M. H. Everhart, W. E. McClain, J.
Inorg. Chem., 2006, 45, 6048–6055; (c) H. Gao and J. T. Groves,
J. Am. Chem. Soc., 2017, 139, 3938–3941; (d) L. M. Brimes, M.
A. van Paridon, R. D. Pike and C. Goh, Inorg. Chim. Acta, 2014,
413, 149–159.
K. Coggins, P. C. Y. Poon, S. Toledo, W. Kaminsky, M. L. Kirk 45 S. Groni, C. Hureau, R. Guillot, G. Blondin, G. Blain and E.
and J. A. Kovacs, J. Am. Chem. Soc., 2015, 137, 2253–2264. Anxolabéhère-Mallart, Inorg. Chem., 2008, 47, 11783–11797.
27 For BDE values on Fe(II)-hydroxides see: R. Gupta and A. S. 46 M. C. White, A. D. Doyle and E. N. Jacobsen, J. Am. Chem. Soc.,
Borovik, J. Am. Chem. Soc., 2003, 125, 13234–13242. 2001, 123, 7194.
28 An extremely low pKa value of only 8.1 in DMSO was reported 47 G. M. Sheldrick, Acta Crystallogr. A, 2015, 71, 3–8.
for such aquacomplex (ref. 24b). 48 G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112–122.
29 A. Gansäuer, L. Shi, M. Otte, I. Huth, A. Rosales, I. Sancho- 49 L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849–854.
Sanz, N. M. Padial and J. E. Oltra, Radicals in Synthesis III. 50 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Topics in Current Chemistry, ed. M. Heinrich, A. Gansäuer,
Springer, Berlin, Heidelberg, 2011, pp. 93–120.
30 H. Toftlund, E. Pedersen and S. Yde-Andersen, Acta Chem.
Scand. A, 1984, 38, 693–697.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.
A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam,
M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09,
Revision B.01, Gaussian, Inc., Wallingford CT 2010.
31 Nevertheless, a more complex situation was observed in
DMSO-d6 (See ESI, Fig. S2), in which new signals can be clearly
observed. They can be attributed to partial dissociation of the
chloride from the metal center or even to the equilibrium
between different configurations in the complex: C. M.
Coates, K. Hagan, C. A. Mitchell, J. D. Gorden and C. R.
Goldsmith, Dalton Trans., 2011, 40, 4048–4058.
32 1H-NMR spectrum of a complex derived from the chloride-
SbF6 exchange also presents nine clear signals (see ESI, Figs.
S13-S15), being also in qualitative agreement with the
previous one. Therefore, an equilibrium between
configurations can be in principle a fast process in NMR
timescale.
51 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270–283.
33 R. L. Carlin, Magnetochemistry, Springer-Verlag. Berlin, 1986. 52 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105,
34 S. A. Cantalupo, S. R. Fiedler, M. P. Shores, A. L. Rheingold and
L. H. Doerrer, Angew. Chem. Int. Ed., 2012, 51, 1000–1005.
35 M. E. Pascualini, N. V. Di Russo, A. E. Thuijs, A. Ozarowski, S.
A. Stoian, K. A. Abboud, G. Christou and A. S. Veige, Chem. Sci.,
2015, 6, 608–612.
2999–3094.
36 R. Boča, Coord. Chem. Rev., 2004, 248, 757–815.
37 D. E. Freedman, W. H. Harman, T. D. Harris, G. J. Long, C. J.
Chang and J. R. Long, J. Am. Chem. Soc., 2010, 132, 1224–
1225.
38 (a) F. G. Bordwell, J.-P. Cheng and J. A. Harrelson Jr., J. Am.
Chem. Soc., 1988, 110, 1229–1231; (b) D. D. M. Wayner and
V. D. Parker, Acc. Chem. Res., 1993, 26, 287–294; (c) J. W.
10 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins