´
A. PERJESSY ET AL.
In order to investigate the role of chlorine atoms in the side
chain on the transmission of substituent effect, we have
investigated the substituent effect on the previously measured[14]
13C NMR CS in 3-phenyl-1-(40-X-phenyl)-2-propen-1-one as
chalcone with non-chlorinated side chain here upon called
non-chlorinated chalcone series. Tables 4 and 5 give the MSP and
DSP modeling results, respectively. The substituent effect trends
for C-10, CO, Cb, and Ca in the non-chlorinated chalcone series are
similar to the chlorinated chalcone series. Nevertheless, carbon
atoms of the benzylidine ring B in the non-chlorinated chalcone
series failed to correlate with any MSP or DSP model. This finding
could be attributed to the generated dipole by the chlorine
atoms bonded to carbon atom number 2 and 4 in the chlorinated
series. This dipole makes the C-2 and C-4 more sensitive to
respond to the substituent at para substituted benzene ring A.
REFERENCES
[1] B. Ngameni, J. Watchueng, F. F. Boyom, F. Keumedjio, B. T. Ngadjui, J.
Gut, B. M. Abegaz, P. J. Rosenthal, ARKIVOC 2007, xiii, 116.
[2] J. O. Midiwo, F. M. Omoto, A. Yenesew, H. M. Akala, J. Wangui, P. Liyala,
P. Wasunna, N. C. Waters, ARKIVOC 2007, ix, 21.
[3] J. C. Trivedi, J. B. Bariwal, K. D. Upadhyay, Y. T. Naliapara, S. K. Joshi, C.
C. Pannecouque, E. De Clercq, A. K. Shah, Tetrahedron Lett. 2007, 48,
8472.
[4] K. Nakagawa-Goto, K. Lee, Tetrahedron Lett. 2006, 47, 8263.
[5] J. Deng, T. Sanchez, L. Q. Al-Mawsawi, R. Dayam, R. A. Yunes, A.
Garofalo, M. B. Bolger, N. Neamati, Bioorg. Med. Chem. 2007, 15, 4985.
[6] X. Liu, M. L. Go, Bioorg. Med. Chem. 2007, 15, 7021.
[7] M. Cabrera, M. Simoens, G. Falchi, M. L. Lavaggi, O. E. Piro, E. E.
´
Castellano, A. Vidal, A. Azqueta, A. Monge, A. Lopez de Cerain, G.
Sagrera, G. Seoane, H. Cerecetto, M. Gonzalez, Bioorg. Med. Chem.
´
´
2007, 15, 3356.
[8] J. P. Raval, K. R. Desai, ARKIVOC 2005, xiii, 21–228.
[9] P. Guo, W. Chen, J. Song, W. Cao, C. Tian, J. Mol. Struct. (Theochem)
2008, 33, 849.
´
´
˘
˘
´
´ ´
[10] T. Lovasz, G. Tu´ros, L. Gaina, A. Csampai, D. Frigyes, B. Fabian, I. A.
´
Silberg, P. Sohar, J. Mol. Struct. 2005, 751, 100.
[11] N. N. Kolos, B. V. Paponov, V. D. Orlov, M. I. Lvovskaya, A. O.
CONCLUSION
Doroshenko, O. V. Shishkin, J. Mol. Struct. 2006, 785, 114.
´
The p-polarization concept analysis of carbonyl stretching and
13C NMR CS results have aided in explaining successfully the
normal and reverse substituent field effect, rF, felt at several
substituent sensitive sites. Chlorine atoms in the side chain not
only play a significant role in sensitizing carbon atoms of the
benzene ring which carries chlorine atoms to the substituent
effect, but also the p-polarization and its induced dipoles
direction of the remote chlorine atoms play a significant role in
determining the substituent field effect felt at probe sites in the
vicinity of the chlorine atoms, either enhancing the substituent
field effect as in the case of C-2 and C-5 or retarding it as in C-6.
The substituent resonance effect is less sensitive than the
substituent field effect to the side chain chlorine atoms dipole, as
can be inferred from the reverse behavior of rI/rR for C-2 and C-5
from one side and that of C-6 from other side. The choice of
certain substituent resonance constant than other helped in
detecting that site which is being conjugated such as C-10, or
non-conjugated as in Cb since the former selects sþR , while the
latter selects sR8. Both MSP and DSP models give conclusive
results that the chlorine atoms deplete the benzene ring B from
charge as can be inferred from the best selected substituent
constant sþp and sþR for both models respectively. Trends and
interpretation results of 13C NMR CS utilizing the MSP model
agree with DSP results as long as rF or rI does not exceed the
value of rR as in the case of 13C NMR CS of CO. MSP which uses sq
gives only one significant result for Cb 13C NMR CS indicating that
this substituent constant is useful in the correlation of
non-conjugated sites. Calculated 13C NMR CS by ChemBioDraw
Ultra11 of side-chain carbon atoms CO, Ca, Cb, and carbons of
benzene ring B were insensitive to the variation of substituents.
[12] J. Maynadie, B. Delavaux-Nicot, D. Lavabre, S. Fery-Forgues, J. Orga-
nomet. Chem. 2006, 691, 1101.
[13] N. L. Silver, D. W. Boykin, Jr J. Org. Chem. 1970, 35, 759.
´
[14] E. Solcaniova, S. Toma, S. Gronowit, Org. Magn. Res. 1976, 8, 439.
[15] A. Perjessy, D. W. Boykin, Jr L. Fisera, A. Krutosikova, J. Kovac, J. Org.
´
ˇ
´
Chem. 1973, 38, 1807.
[16] T. Sotomatsu, Y. Murata, T. Fujita, J. Comput. Chem. 1989, 10, 94.
[17] B. A. Saleh, MSc Thesis, University of Basrah, 1999.
ˇ
[18] P. Perjesi, A. Perjessy, E. Kolehmainen, E. Osz, M. Samalikova, J.
´
Linnanto, E. Virtanen, J. Mol. Struct. 2004, 697, 41.
´
´
´
[19] P. Perjesi, J. Linnanto, E. Kolehmainen, E. Osz, E. Virtanen, J. Mol. Struct.
2005, 740, 81.
[20] G. K. Hamer, I. R. Peat, W. F. Reynolds, Can. J. Chem. 1973, 51, 897.
[21] G. K. Hamer, I. R. Peat, W. F. Reynolds, Can. J. Chem. 1973, 51,
915.
[22] J. Bromilow, R. T. C. Brownlee, D. J. Craik, P. R. Fiske, J. E. Rowe, M.
Sadek, J. Chem. Soc. Perkin Trans. 2 1981, 753.
[23] R. T. C. Brownlee, D. J. Craik, J. Chem. Soc. Perkin Trans. 2 1981, 760.
[24] R. T. C. Brownlee, D. J. Craik, J. Org. Magn. Reson. 1981, 15, 248.
ˇ
[25] G. F. Fadhil, H. A. Radhy, A. Perjessy, M. Samalikova, E. Kolehmainen,
´
ˇ
W. M. F. Fabian, K. Laihia, Z. Sustekova, Molecules 2002, 7, 833.
[26] B. A. Saleh, S. A. Al-Shawi, G. F. Fadhil, J. Phys. Org. Chem. 2008, 21,
96.
[27] E.P. Kohler, H.M. Chadwell, in Organic Synthesis, Coll. Vol. I, John Wiley
and Sons Inc: New York, 1940, p. 78.
[28] H. H. Szmant, A. J. Basso, J. Am. Chem. Soc. 1952, 74, 4397.
[29] C. K. Bradsher, F. C. Brown, W. B. Blue, J. Am. Chem. Soc. 1949, 71, 3570.
[30] R. E. Lyle, L. P. Paradis, J. Am. Chem. Soc. 1955, 77, 6667.
[31] ChemBioDraw Ultra 11, Cambridgesoft.com, 100 Cambridge Park
Drive, Cambridge, MA 02140, USA.
[32] P. R. Wells, S. Ehrenson, R. W. Taft, Prog. Phys. Org. Chem. 1968, 6, 147.
[33] S. A. O. Al-Shawi, PhD Thesis, University of Basrah, 1998.
[34] C. Laurence, M. Berthelot, J. Chem. Soc. Perkin Trans. 2 1979, 98.
[35] J. Browmilow, R. T. C. Brownlee, D. J. Craik, P. R. Fiske, J. E. Rowe, M.
Sadek, J. Chem. Soc. Perkin Trans. 2 1981, 753.
[36] D. J. Craik, R. T. C. Brownlee, Prog. Phys. Org. Chem. 1983, 14, 1.
View this article online at wileyonlinelibrary.com
Copyright ß 2010 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2011, 24 140–146