ORGANIC
LETTERS
2011
Vol. 13, No. 7
1606–1609
Fmoc-Based Synthesis of Peptide
Thioesters for Native Chemical Ligation
Employing a tert-Butyl Thiol Linker
,†,‡
Richard Raz‡,§ and Jorg Rademann*
€
Medicinal Chemistry, Department of Pharmacy, Leipzig University, Bru€derstrasse 34,
04103 Leipzig, Germany, Leibniz Institute of Molecular Pharmacology (FMP), Robert-
€
Rossle-Strasse 10, 13125, Germany, and Institute of Chemistry and Biochemistry, Free
University Berlin, Takustrasse 3, 14195 Berlin, Germany
Received January 4, 2011
ABSTRACT
tert-Butyl thioesters display an astonishing stability toward secondary amines in basic milieu, in contrast to other alkyl and aryl thioesters.
Exploiting this enhanced stability, peptide thioesters were synthesized in a direct manner, applying a tert-butyl thiol linker for Fmoc-based solid-
phase peptide synthesis.
Peptide thioesters are key molecules in the synthesis of
peptides and proteins, for example, as starting materials
for native chemical ligation (NCL).1 NCL is the trans-
thioesterification of a C-terminal thioester peptide with an
N-terminal cystein peptide, followed by an S f N acyl
shift2 to furnish a native amide linkage. While peptide
thioesters can be prepared by Boc chemistry,3 their synth-
esis with standard Fmoc-based methods is hampered by
the reactivity of thioesters against piperidine resulting in
rapid thioester cleavage during Fmoc deprotection. Direct
syntheses of peptide thioesters using Fmoc amino acids
have been attempted with limited success, e.g., by applying
milder deblocking techniques which suffer from low yields
and/or incomplete Fmoc deprotection.4 Instead “safety-
catch linkers” were used for the Fmoc-based synthesis of
peptide thioesters. These linkers are activated, e.g., by
alkylation of acyl sulfonamides (Kenner’s linker),5 oxida-
tion of acyl hydrazides,6 or intramolecular diacylation.7,8
(4) (a) Li, X.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39,
8669–8672. (b) Kawakami, T.; Hasegawa, K.; Aimoto, S. Bull. Chem.
Soc. Jpn. 1993, 66, 2700–2706. (c) Futaki, S; Sogawa, K.; Maruyama, J.;
Asahara, T.; Niwa, M. Tetrahedron Lett. 1997, 38, 6237–6240. (d)
Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000, 6,
225–234. (e) Bu, X.; Xie, G.; Law, C. W.; Guo, Z. Tetrahedron Lett.
2002, 43, 2419–2422.
(5) Kenner, G. W.; McDermott, J. R.; Sheppard, R. C. Chem.
Commun. 1971, 636–637.
(6) Millington, C. R.; Quarrell, R.; Lowe, G. Tetrahedron Lett. 1998,
39, 7201–7204.
(7) Tofteng, A. P.; Sørensen, K. K.; Conde-Frieboes, K. W.; Hoeg-
Jensen, T.; Jensen, K. J. Angew. Chem., Int. Ed. 2009, 48, 7411–7414.
(8) Blanco-Canosa, J. B.; Dawson, P. E. Angew. Chem., Int. Ed. 2008,
120, 6957–6961.
‡ Leibniz Institute of Molecular Pharmacology (FMP).
† Leipzig University.
§ Free University Berlin.
(1) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science
1994, 266, 776–779.
(2) Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H.
Justus Liebigs Ann. Chem. 1953, 583, 129–149.
(3) (a) Aimoto, S. Biopolymers 1999, 51, 247–265. (b) Bang, D.;
Pentelute, B. L.; Gates, Z. P.; Kent, S. B. H. Org. Lett. 2006, 8, 1049–
1052.
(9) (a) Keck, G. E.; Welch, D. S.; Poudel, Y. B. Tetrahedron Lett.
2006, 47, 8267–8270. (b) Fedor, L. R. J. Am. Chem. Soc. 1969, 91, 913–
917. (c) Mohrig, J. R.; Carlson, H. K.; Coughlin, J. M.; Hofmeister,
G. E.; McMartin, L. A.; Rowley, E. G.; Trimmer, E. E.; Wild, A. J.;
Schultz, S. C. J. Org. Chem. 2007, 72, 793–798.
r
10.1021/ol1029723
Published on Web 02/28/2011
2011 American Chemical Society