The Journal of Organic Chemistry
NOTE
vacuum line. The resulting product 10, a colorless foam (∼120 mg, 80%),
consequently contained traces of solvent, and the reported yield is
therefore approximate. After weighing, 10 was dissolved in CH2Cl2
(1.0 mL) and used immediately: Rf = 0.52 (30% EtOAc/hexanes); IR
(thin film) 3281, 1775, 1736, 1647, 1597 cm-1; 1H NMR (300 MHz,
CD2Cl2) δ 8.20 (s, 1H), 7.86 (apparent d, J = 8.4 Hz, 2H), 7.37
(apparent d, J = 8.0 Hz, 2H), 6.31 (dd, J = 6.0, 1.4 Hz, 1H), 5.21 (dt, J =
7.4, 1.8 Hz, 1H), 4.53 (dd, J = 6.1, 2.0 Hz, 1H), 4.16 (dd, J = 9.6, 4.4 Hz,
1H), 4.03 (dd, J = 10.2, 7.4 Hz, 1H), 3.95 (t, J = 9.9 Hz, 1H), 3.87 (td, J =
10.1, 4.5 Hz, 1H), 2.45 (s, 3H), 1.05 (s, 9H), 0.96 (s, 9H); 13C NMR22
(75 MHz, CD2Cl2) δ 155.9 (s), 147.0 (s), 146.1 (o), 131.0 (s), 130.4
(o), 130.0 (o), 100.0 (o), 75.7 (o), 73.9 (o), 73.4 (o), 66.2 (t), 27.7 (o),
27.2 (o), 23.1 (s), 22.1 (o), 20.2 (s); HRMS (FAB) m/z calcd for
C22H34NO8SiS (M þ H)þ 500.1774, found 500.1760.
A. G. J. Org. Chem. 1997, 62, 4910–4911. (d) Chelucci, G.; Culeddu, N.;
Saba, A.; Valenti, R. Tetrahedron Lett. 1999, 40, 8269–8270. (e) White,
J. D.; Hrnciar, P. J. Org. Chem. 1999, 64, 7271–7273. (f) Wardrop, D. J.;
Velter, A. I.; Forslund, R. E. Org. Lett. 2001, 3, 2261–2264. (g) Wardrop,
D. J.; Forslund, R. E. Tetrahedron Lett. 2002, 43, 737–739. (h) Wardrop,
D. J.; Forslund, R. E.; Landrie, C. L.; Velter, A. I.; Wink, D.; Surve, B.
Tetrahedron: Asymmetry 2003, 14, 929–940. (i) Clark, J. S.; Dossetter,
A. G.; Wong, Y.-S.; Townsend, R. J.; Whittingham, W. G.; Russell, C. A.
J. Org. Chem. 2004, 69, 3886–3898. (j) Erhunmwunse, M. O.; Steel, P. G.
Tetrahedron Lett. 2009, 50, 3568–3570. Copper: (k) Mander, L. N.;
Owen, D. J. Tetrahedron Lett. 1996, 37, 723–726. (l) Lee, S.; Lim, H.-J.;
Cha, K. L.; Sulikowski, G. A. Tetrahedron 1997, 53, 16521–16532.
(m) Sulikowski, G. A.; Lee, S. Tetrahedron Lett. 1999, 40, 8035–8038.
Ruthenium: (n) Zheng, S.-L.; Yu, W.-Y.; Che, C.-M. Org. Lett. 2002,
4, 889–892.
(2) (a) Espino, C. G.; Du Bois, J. In Modern Rhodium-Catalyzed
Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; pp
379-416. (b) Kim, M.; Mulcahy, J. V.; Espino, C. G.; Du Bois, J. Org.
Lett. 2006, 8, 1073–1076. (c) Sato, S.; Shibuya, M.; Kanoh, N.; Iwabuchi,
Y. Chem. Commun. 2009, 6264–6266. (d) Sato, S.; Shibuya, M.; Kanoh,
N.; Iwabuchi, Y. J. Org. Chem. 2009, 74, 7522–7524.
(3) (a) Bodner, R.; Marcellino, B. K.; Severino, A.; Smenton, A. L.;
Rojas, C. M. J. Org. Chem. 2005, 70, 3988–3996. (b) Gupta, R.; Sogi,
K. M.; Bernard, S. E.; Decatur, J. D.; Rojas, C. M. Org. Lett. 2009,
11, 1527–1530.
Reaction of 10 Including 4-Penten-1-ol. Potassium carbonate
(96 mg, 0.69 mmol) and Rh2(OAc)4 (11 mg, 0.025 mmol) were
combined in a 10 mL round-bottom flask, and 4-penten-1-ol (125 μL,
1.23 mmol) was added, followed immediately by a solution of freshly
prepared N-tosyloxycarbamate 10 (∼114 mg, 0.228 mmol) in CH2Cl2
(1.0 mL). The carbamate-containing pear-shaped flask was rinsed with
CH2Cl2 (2 ꢀ 1.0 mL) with the rinsings being added to the reaction
mixture. The well-stirred mixture turned from a blue-green-gray to a
purple color within 20-30 min. Stirring was continued for 16 h, and the
purple mixture was filtered through a tightly packed pad of Celite, rinsing
with EtOAc (80 mL). The filtrate was concentrated and the crude
(4) (a) Kirschning, A.; Hary, U.; Plumeier, C.; Ries, M.; Rose, L.
J. Chem. Soc., Perkin Trans. 1 1999, 519–528. (b) Kirschning, A. Eur.
J. Org. Chem. 1998, 2267–2274. (c) Kirschning, A. J. Org. Chem. 1995,
60, 1228–1232. (d) Shi, L.; Kim, Y.-J.; Gin, D. Y. J. Am. Chem. Soc. 2001,
123, 6939–6940. (e) Engstrom, K. M.; Mendoza, M. R.; Navarro-
Villalobos, M.; Gin, D. Y. Angew. Chem., Int. Ed. 2001, 40, 1128–1130.
(5) (a) Doyle, M. P.; Phillips, I. M.; Hu, W. J. Am. Chem. Soc. 2001,
123, 5366–5367. (b) Doyle, M. P. J. Org. Chem. 2006, 71, 9253–9260.
(6) Koser, G. F. Aldrichim. Acta 2001, 34, 89–102.
1
material analyzed by H NMR (separately in CDCl3 and acetone-d6),
with comparison to authentic samples of 1-3. The 2:3 and 2-r:2-β
ratios were best measured in acetone-d6 from the resonances for H3 of 2-
r (δ 4.56), H1 of 2-β (δ 4.86), and H2 of 3 (δ 5.33). The yields were
determined by 1H NMR analysis of the crude in CDCl3 using the H1
signals for 2-r and 2-β (δ 4.81 and δ 4.69, respectively), the H2 signal
for 3 (δ 5.41), and the H3 signal for 1 (δ 5.27) versus mesitylene added
as an internal standard. The reported ratios and yields are the averages
from three separate runs.23
(7) For an iodonium intermediate similar to that in Scheme 2, see:
Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Angew.
Chem., Int. Ed. 2010, 49, 7068–7071.
(8) When starting from an allal 3-carbamate (opposite C3 config-
uration compared to 1), a small amount (16%) of amidoglycosylation
product did form in the rhodium-free control experiment. Levites-
Agababa, E.; Menhaji, E.; Perlson, L. N.; Rojas, C. M. Org. Lett. 2002,
4, 863–865.
(9) (a) 7b: Hoberg, J. O. Carbohydr. Res. 1997, 300, 365–367.
(b) 7d: Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt,
K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233–2244.
(10) (a) Nam, W.; Valentine, J. S. J. Am. Chem. Soc. 1990,
112, 4977–4979; J. Am. Chem. Soc. 1991, 113, 7449. See also:
(b) Yang, Y; Diederich, F; Valentine, J. S. J. Am. Chem. Soc. 1990,
112, 7826–7828. (c) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am.
Chem. Soc. 1994, 116, 2742–2753. (d) Cochran, B. M.; Michael, F. E.
Org. Lett. 2008, 10, 5039–5042.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental details,
b
including preparation and characterization of compounds 7a-e,
procedures for control experiments, and copies of H and 13C
1
NMR spectra. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: crojas@barnard.edu.
(11) (a) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem. Soc. 2005,
127, 14198–14199. (b) Lebel, H.; Leogane, O.; Huard, K.; Lectard, S.
Pure Appl. Chem. 2006, 78, 363–375. (c) Huard, K.; Lebel, H. Chem.—
Eur. J. 2008, 14, 6222–6230.(d) Huard, K.; Lebel, H. In Organic
Syntheses; Ragan, J. A., Ed.; Wiley: New York, 2009; Vol. 86; pp 59-69.
(12) (a) Liu, R.; Herron, S. R.; Fleming, S. A. J. Org. Chem. 2007,
72, 5587–5591. (b) Lebel, H.; Lectard, S.; Parmentier, M. Org. Lett.
2007, 9, 4797–4800.
(13) (a) Donohoe, T. J.; Chughtai, M. J.; Klauber, D. J.; Griffin, D.;
Campbell, A. D. J. Am. Chem. Soc. 2006, 128, 2514–2515. (b) Donohoe,
T. J.; Bataille, C. J. R.; Gattrell, W.; Kloesges, J.; Rossignol, E. Org. Lett.
2007, 9, 1725–1728. (c) Donohoe, T. J.; Flores, A.; Bataille, C. J. R.;
Churruca, F. Angew. Chem., Int. Ed. 2009, 48, 6507–6510.
’ ACKNOWLEDGMENT
We thank the National Institutes of Health (R15 GM081889-
03) and the National Science Foundation (CHE-0957181) for
generous support. The Howard Hughes Medical Institute Science
Pipeline Project and the Barnard College Bernice Segal Fund
provided undergraduate student summer research fellowships.
We are grateful to Ms. Kimberly Sogi for early studies with glucal
3-azidoformates and to Dr. Yasuhiro Itagaki (Columbia Uni-
versity) for mass spectrometric analyses.
’ REFERENCES
(14) We have previously observed formation of a primary carbamate
upon photolysis of an allal 3-azidoformate: (a) Kan, C.; Long, C. M.;
Paul, M.; Ring, C. M.; Tully, S. E.; Rojas, C. M. Org. Lett. 2001,
3, 381–384. See also: (b) Lwowski, W. In Azides and Nitrenes: Reactivity
(1) Rhodium: (a) Doyle, M. P.; Dyatkin, A. B.; Autry, C. L. J. Chem.
Soc., Perkin Trans. 1 1995, 619–621. (b) Lee, E.; Choi, I.; Song, S. Y.
J. Chem. Soc., Chem. Commun. 1995, 321–322. (c) Clark, J. S.; Dossetter,
2243
dx.doi.org/10.1021/jo101599q |J. Org. Chem. 2011, 76, 2240–2244