Scheme 1. Synthetic Strategy
rare.11 In this context, we have recently become involved in
vinyl halide Heck reactions upon azocine rings for the total
synthesis of apparicine.12
Figure 1. Iboga and Catharanthus indole alkaloids.
We set out to study the indole-templated RCM en route
to cleavamine, targeting azonino[5,4-b]indoles I, with the
5,6 double bond functionality required for the Heck
coupling. To this end, indole 4 (Scheme 2), which is
equipped with a Boc group at the aliphatic nitrogen and a
robust phenylsulfonyl at the indole nitrogen, was selected as
the starting diene. This compound was efficiently prepared
from the protected tryptophol 113 by successive introduc-
tion of the required alkenyl appendages. Thus, the exposure
of 1 to excess LDA and CuCN followed by the reaction of
the intermediate organocopper with allyl bromide led to
2-allylindole 2 (65%), which was uneventfully converted
synthesis of (()-cleavamine and its 14,20-cis-dihydro
derivative.
Although the RCM methodology has become a power-
ful tool for the synthesis of medium sized rings,6 the
construction of nine-membered rings can be challenging.7
Based on our previous RCM synthesis of azocinoindoles,8
we assumed that both the fused indole ring and the
nitrogen carbamate would operate synergistically, thus
favoring the ring closure. On the other hand, although
Heck couplings of vinyl halides and elaborated
cyclohexenes9 or cycloheptenes10 have proved to be useful
for the assembly of the bridged core of several indole
alkaloids, cyclizations upon higher cycloalkenes to pro-
duce strained bridged systems similar to our proposal are
Scheme 2. Synthesis and RCM of Diene 4
(6) (a) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073–2077. (b)
Yet, L. Chem. Rev. 2000, 100, 2963–3007. (c) Michaut, A.; Rodriguez, J.
Angew. Chem., Int. Ed. 2006, 45, 5740–5750.
(7) For instance, see: (a) Clark, J. S.; Marlin, F.; Nay, B.; Wilson, C.
Org. Lett. 2003, 5, 89–92. (b) Enders, D.; Lenzen, A.; Backes, M.;
Janeck, C.; Catlin, K.; Lannou, M.-I.; Runsink, J.; Raabe, G. J. Org.
Chem. 2005, 70, 10538–10551. (c) Schwartz, K. D.; White, J. D. Org.
Lett. 2011, 13, 248–251.
ꢀ
(8) Bennasar, M.-L.; Zulaica, E.; Sole, D.; Alonso, S. Tetrahedron
2007, 63, 861–866.
(9) (a) Rawal, V. H.; Michoud, C. Tetrahedron Lett. 1991, 32, 1695–
1698. (b) Rawal, V. H.; Michoud, C.; Monestel, R. F. J. Am. Chem. Soc.
1993, 115, 3030–3031. (c) Rawal, V. H.; Iwasa, S. J. Org. Chem. 1994, 59,
ꢀ
ꢀ
2685–2686. (d) Sole, D.; Bonjoch, J.; Garcıa-Rubio, S.; Peidro, E.;
´
Bosch, J. Chem.;Eur. J. 2000, 6, 655–665. (e) Eichberg, M. J.; Dorta,
R. L.; Grotjahn, D. B.; Lamottke, K.; Schmidt, M.; Vollhardt, K. P. C.
J. Am. Chem. Soc. 2001, 123, 9324–9337. (f) Mori, M.; Nakanishi, M.;
Kahishima, D.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 9801–9807. (g)
Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J.
Am. Chem. Soc. 2008, 130, 5368–5377. (h) Martin, D. B. C.; Vanderwal,
C. D. J. Am. Chem. Soc. 2009, 131, 3472–3473.
(10) (a) Birman, V. B.; Rawal, V. H. J. Org. Chem. 1998, 63, 9146–
ꢀ
9147. (b) Bennasar, M.-L.; Zulaica, E.; Sole, D.; Alonso, S. Synlett 2008,
667–670.
(11) For related Heck processes involving more robust aryl halides,
see: (a) Grigg, R.; Sridharan, V.; York, M. Tetrahedron Lett. 1998, 39,
4139–4142. (b) Ribelin, T. P.; Judd, A. S.; Akritopoulou-Zanze, I.;
Henry, R. F.; Cross, J. L.; Whittern, D. N.; Djuric, S. W. Org. Lett. 2007,
9, 5119–5122. (c) See also ref 7b.
Org. Lett., Vol. 13, No. 8, 2011
2043