M. I. Lansdell, D. Fradet / Tetrahedron Letters 52 (2011) 1199–1201
1201
References and notes
OH
OBn
OR
OBn
OR
1. Lansdell, M. I.; Hepworth, D.; Calabrese, A.; Brown, A. D.; Blagg, J.; Burring, D. J.;
Wilson, P.; Fradet, D.; Brown, T. B.; Quinton, F.; Mistry, N.; Tang, K.; Mount, N.;
Stacey, P.; Edmunds, N.; Adams, C.; Gaboardi, S.; Neal-Morgan, S.; Wayman, C.;
Cole, S.; Phipps, J.; Lewis, M.; Verrier, H.; Gillon, V.; Feeder, N.; Heatherington,
A.; Sultana, S.; Haughie, S.; Martin, S. W.; Sudworth, M.; Tweedy, S. J. Med.
Chem. 2010, 53, 3183–3197.
2. Bursavich, M. G.; West, C. W.; Rich, D. H. Org. Lett. 2001, 3, 2317–2320.
3. Chang, M.-Y.; Pai, C.-L.; Kung, Y.-H. Tetrahedron Lett. 2005, 46, 8463–8465.
4. Kim, K.; Liu, E. A.; Mischke, S. G. US Patent Appl. 20040180929; Chem. Abstr.
2004, 141, 277500.
5. Davies, D. T.; Jones, G. E.; Markwell, R. E.; Pearson, N. D. International PCT
patent application WO2003010138; Chem. Abstr. 2003, 138, 153541.
6. Andrews, M. D.; Brown, A. D.; Fradet, D. S.; Lansdell, M. I. International PCT
patent application WO2007015162; Chem. Abstr. 2007, 146, 229186.
7. Burk, R. M.; Gac, T. S.; Roof, M. B. Tetrahedron Lett. 1994, 35, 8111–8112.
8. Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. Tetrahedron Lett. 1994, 34,
7171–7172.
OH
b
a
N
N
N
O
O
O
O
O
O
11
12 R = Me
13 R = Et
14 R = Me
15 R = Et
Scheme 2. Reagents and conditions: (a) RI (2 equiv), KOH(s) (4 equiv), DMSO, 20 °C,
72 h, 98% for 12, 66% for 13; (b) 15 wt % of 20 wt % Pd(OH)2/C, 1-methylcyclohexa-
1,4-diene, EtOH, reflux, 1.5 h, 100% for 14, 100% for 15.
Access to mono-4-O-alkylated compounds was provided by
derivatisation of benzyl ether 11 with haloalkanes in DMSO in
the presence of powdered potassium hydroxide,9 followed by
benzyl-deprotection of the resulting diethers 12 and 13 under
transfer hydrogenation conditions (Scheme 2).
The O-alkylated piperidines 3, 8–11, 14 and 15 shown above
were all cleanly Boc-deprotected (4 M hydrogen chloride in 1,4-
dioxane (10 equiv), dichloromethane, 20 °C, 30–60 min) to give
quantitative yields of the corresponding amines as their hydrogen
chloride salts.
In conclusion, we have identified that a convenient phase trans-
fer alkylation protocol6,11 provides high selectivity in the derivati-
sation of diol 2, a challenging setting in which many other common
conditions for hydroxyl alkylation have proven inadequate. The
MC4 agonist activity of compounds analogous to PF-00446687 de-
rived from such 3- and 4-O-alkylated piperidines will be described
in detail elsewhere.
9. Johnstone, R. A. W.; Rose, M. E. Tetrahedron 1979, 35, 2169–2173.
10. Davis, R.; Muchowski, J. M. Synthesis 1982, 987–988.
11. Representative experimental procedure. A solution of NaOH (544 mg, 13.6 mmol)
in H2O (3.4 mL) was added to a solution of tert-butyl (3S,4S)-3,4-dihydroxy-4-
phenylpiperidine-1-carboxylate (2) (200 mg, 0.68 mmol) in PhMe (3.4 mL)
followed by MeI (0.85 mL, 13.6 mmol) and Bu4NHSO4 (231 mg, 0.68 mmol).
The mixture was stirred vigorously at 20 °C for 16 h, then diluted with H2O
(20 mL) and extracted with CH2Cl2 (3 Â 20 mL). The combined organic layers
were dried (MgSO4) and filtered, and the filtrate was concentrated in vacuo.
The residual oil was purified by column chromatography on silica gel (pentane/
EtOAc 1:0–7:3 gradient elution) to give methyl ether 8 as a colourless oil
(200 mg, 96%). 1H NMR (CD3OD, 400 MHz) d 1.50 (s, 9H), 1.68 (dt, J = 2.4,
14.2 Hz, 1H), 1.93 (td, J = 4.7, 13.3, 13.5 Hz, 1H), 3.03 (br s, 1H), 3.11 (s, 3H),
3.17 (br s, 1H), 3.57 (dd, J = 4.9, 10.5 Hz, 1H), 3.85–3.90 (m, 1H), 4.19 (br s, 1H),
7.23 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.7 Hz, 2H); 13C NMR
(CD3OD, 500 MHz) d 28.7, 39.5, 54.8, 58.5, 75.0, 81.3, 81.8, 126.2, 127.8, 129.1,
147.3, 156.5; LRMS (APCI) m/z 208 [MH À Boc]+. HRMS (ESI+) found m/z
330.1687 (calculated for C17H25N1Na1O4 = 330.167579).
Acknowledgement
We thank Denise Burring for assistance in preparing this
manuscript.