The Journal of Organic Chemistry
NOTE
(n-hexane/i-PrOH = 80:20), 1.0 mL/min; minor enantiomer, tR
31.9 min, major enantiomer, tR = 41.0 min.
=
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, spectral
b
data for the products, and X-ray crystallographic data (CIF file of
4f: CCDC 787026). This material is available free of charge via
’ AUTHOR INFORMATION
Figure 1. X-ray crystal structure of 4f.
Corresponding Author
*E-mail: xupf@lzu.edu.cn.
’ ACKNOWLEDGMENT
We are grateful for the National Basic Research Program
of China (Nos. 2009CB626604, 2010CB833203), the NSFC
(20972058, 21032005), and the “111” program from MOE of
P. R. China
’ REFERENCES
(1) For selected reviews on organocatalysis, see: (a) Harutyunyan,
S. R.; den hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L Chem. Rev.
2008, 108, 2824. (b) Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.;
Dieguez, M. Chem. Rev. 2008, 108, 2796.(c) Acc. Chem. Res. 2004,
37(8), special issue on organocatalysis. (d) Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed. 2004, 43, 5138.
(2) For selected reviews on conjugate addition, see: (a) Sulzer-
Mossꢀe, S.; Alexakis, A. Chem. Commun. 2007, 3123–3135. (b) Tsogoeva,
S. B. Eur. J. Org. Chem. 2007, 1701–1716.
(3) (a) Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Compr.
Heterocycl. Chem. II 1996, 2, 207–257. (b) Kinsman, A. C.; Kerr,
M. A. J. Am. Chem. Soc. 2003, 125, 14120. (c) Kam, T.; Choo, Y.
J. Nat. Prod. 2004, 67, 547. (d) O’Connor, S. E.; Maresh, J. J. Nat. Prod.
Rep. 2006, 23, 532. (e) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed.
2009, 48, 9608.
(4) Selected examples: (a) Gathergood, N.; Zhuang, W.; Jørgensen,
K. A. J. Am. Chem. Soc. 2000, 122, 12517. (b) Austin, J. F.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2002, 124, 1172. (c) Zhou, J.; Tang, Y. J. Am.
Chem. Soc. 2002, 124, 9030. (d) Evans, D. A.; Scheidt, K. A.; Fandrick,
K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (e) Yuan,
Y.; Wang, X.; Li, X.; Ding, K. J. Org. Chem. 2004, 69, 146. (f) Shirakawa,
S.; Berger, R.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 2858. (g)
Palomo, C.; Oiarbide, M.; Kardak, B. G.; García, J. M.; Linden, A. J. Am.
Chem. Soc. 2005, 127, 4154. (h) Evans, D. A.; Fandrick, K. R.; Song, H.-J.
J. Am. Chem. Soc. 2005, 127, 8942. (i) Jia, Y.-X.; Xie, J.-H.; Duan, H.-F.;
Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 1621. (j) Lu, S.-F.; Du,
D.-M.; Xu, J. Org. Lett. 2006, 8, 2115. (k) Zhao, J.-L.; Liu, L.; Sui, Y.; Liu,
Y.-L.; Wang, D.; Chen, Y.-J. Org. Lett. 2006, 8, 6127. (l) Chen, W.; Du,
W.; Yue, L.; Li, R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem.
2007, 5, 816. (m) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.;
Sambri, L.; Melchiorre, P. Org. Lett. 2007, 9, 1403. (n) Yang, H.; Hong,
Y.-T.; Kim, S. Org. Lett. 2007, 9, 2281. (o) Blay, G.; Fernꢀandez, I.; Pedro,
J. R.; Vila, C. Org. Lett. 2007, 9, 2601. (p) Dong, H.-M.; Lu, H.-H.; Lu,
L.-Q.; Chen, C.-B.; Xiao, W.-J. Adv. Synth. Catal. 2007, 349, 1597.
(q) Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew.
Chem., Int. Ed. 2008, 47, 593. (r) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew.
Chem., Int. Ed. 2008, 47, 4016.
Figure 2. Proposed transition state model in the Micheal addition.
hydrogen bonding with a nitro group of the nitroalkene and
enhances their electrophilicity while the tertiary amine deproto-
nates an acidic proton of 1-acetylindolin-3-one, generating a
ternary complex. This proposed dual activation model might be
responsible for the stereochemical outcome of the Michael
adducts.
In conclusion, we have developed a bifunctional thiourea-
tertiary amine-catalyzed asymmetric Michael addition of 1-acet-
ylindolin-3-ones to β-nitrostyrenes in excellent yields and high
diastereo- and enantioselectivities. The corresponding products
could be subsequently converted to 2-functionalized indoles
without loss of enantioselectivities. Further investigation and
application of this methodology are ongoing.
’ EXPERIMENTAL SECTION
Representative Procedure for the Michael Addition of
1-Acetylindolin-3-one to β-Nitrostyrene (Table 3, Entry 1).
To a solution of 1-acetylindolin-3-one 2a (35 mg, 0.2 mmol, 1.0 equiv)
and thiourea catalyst 1e (6 mg, 0.01 mmol, 0.05 equiv) in freshly distilled
DCM (0.4 mL) at -40 °C was added trans-β-nitrostyrene 3a (45 mg,
0.3 mmol, 1.5 equiv). The resulting solution was stirred at -40 °C for
12 h. The reaction was quenched with saturated aqueous ammonium
chloride solution. The aqueous layer was separated and extracted with
ethyl acetate (3 times). The combined organic layers were dried over
Na2SO4, filtered, and concentrated in vacuo. The crude material was
purified by flash column chromatography (PE/EA = 2:1) to afford 64
mg (99% yield) of 4a (91% ee) and its minor diastereomer as a colorless
oil (12:1 dr). Analytical data for 4a: [R]2D0 = -59 (c 1.0, CH2Cl2); 1H
NMR (400 MHz, DMSO-d6) δ 8.01 (s, 1H), 7.51-7.44 (m, 2H), 7.07-
7.00 (m, 6H), 5.62 (dd, J = 6.0, 14.0 Hz, 1H), 5.32 (dd, J = 8.0, 14.0 Hz,
1H), 4.94 (d, J = 4.0 Hz, 1H), 4.39 (s, 1H), 2.52 (s, 1H); 13C NMR
(100 MHz, DMSO-d6) δ 180.0, 168.7, 136.9, 133.0, 128.2, 128.0, 127.9,
127.8, 124.7, 123.7, 122.7, 73.8, 65.5, 43.8, 24.0; HRMS (ESI) m/z calcd
for C18H20N3O4 [M þ NH4]þ:342.1448, found 342.1444. The en-
antiomeric excess was determined by HPLC with an AS-H column.
(5) Selected successful examples: (a) Taylor, M. S.; Jacobsen, E. N.
J. Am. Chem. Soc. 2004, 126, 10558. (b) Seayad, J.; Seayad, A. M.; List, B.
J. Am. Chem. Soc. 2006, 128, 1086. (c) Raheem, I. T.; Thiara, P. S.;
Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (d)
Lee, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 15438.
2886
dx.doi.org/10.1021/jo102022g |J. Org. Chem. 2011, 76, 2884–2887