V. Merlini et al. / Tetrahedron Letters 52 (2011) 1124–1127
1127
7.47 (m, 2H), 7.57–7.60 (m, 1H), 8.05–8.07 (m, 2H) ppm; 13C NMR
(100 MHz, CDCl3): d 3.8 (q), 22.9 (t), 24.2 (q), 27.3 (q), 28.5 (q), 32.1
(t), 32.5 (s), 53.7 (d), 63.6 (d), 77.6 (s), 82.8 (s), 124.5 (d), 128.4 (d),
129.8 (d), 130.4 (s), 131.1 (s), 133.0 (d), 165.5 (s) ppm. HRMS (ES+):
calcd for C20H24O2Na: 319.1674. Found: 319.1677.
3. (a) Frater, G.; Bajgrowicz, J. A.; Kraft, P. Tetrahedron 1998, 54, 7633–7703; (b)
Buchecker, R.; Egli, R.; Regel-Wild, H.; Tscharner, C.; Eugster, C. H.; Uhde, G.;
Ohloff, G. Helv. Chim. Acta 1973, 56, 2548–2563; (c) Baraldi, P. G.; Barco, A.;
Benetti, S.; Pollini, G. P.; Polo, E.; Simoni, D. J. Chem. Soc., Chem. Commun. 1986,
86, 757–758; (d) Ubelhart, P.; Baumeler, A.; Haag, A.; Prewo, R.; Bieri, J. H.;
Eugster, C. H. Helv. Chim. Acta 1986, 69, 816–834; (e) Colombo, M. I.; Zinczuk, J.;
Ruveda, E. A. Tetrahedron 1992, 48, 963–1037; (f) Wang, Y.; Lugtenburg, J. Eur. J.
Org. Chem. 2004, 3497–3510; (g) Luparia, M.; Boschetti, P.; Piccinini, F.; Porta,
A.; Zanoni, G.; Vidari, G. Chem. Biodivers. 2008, 5, 1045–1057.
2.2. AuI-catalyzed rearrangement of 4c:
a-ionone (1)
4. Fehr, C.; Guntern, O. Helv. Chim. Acta 1992, 75, 1023–1028.
5. Brenna, E.; Fuganti, C.; Serra, S.; Kraft, P. Eur. J. Org. Chem. 2002, 967–978.
6. Bovolenta, M.; Castronovo, F.; Vadalà, A.; Zanoni, G.; Vidari, G. J. Org. Chem.
2004, 69, 8959–8962.
In a screw cap vial, [{Au(IPr)}2(
mmol) was added to a solution of propargylic benzoate 4c
l
-OH)][BF4] (6.3 mg, 4.9 ꢀ 10ꢁ3
7. (a) Jones, G. Org. React. 1967, 15, 204–599; (b) Smith, M. B.; March, J. Advanced
Chemistry: Reactions Mechanisms and Structure, 5th ed.; Wiley: New York, 2001.
8. (a) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford
University Press: Oxford, 2001; (b) Wadsworth, W. S., Jr. Org. React. 1977, 25,
73–253; (c) Stec, W. J. Acc. Chem. Res. 1983, 16, 411–417; (d) Smith, M. B.;
March, J. Advanced Chemistry: Reactions, Mechanisms, and Structure, 5th ed.;
Wiley: New York, 2001. p 1691.
9. (a) Meyer, K. H.; Schuster, K. Chem. Ber. 1922, 55, 819–823; (b) Clapperton, E. T.;
MacGregor, W. S. J. Am. Chem. Soc. 1950, 72, 2501–2502; (c) Hennion, G. F.;
Fleck, B. R. J. Am. Chem. Soc. 1955, 77, 3253–3258; (d) Edens, M.; Boerner, D.;
Chase, C. R.; Nass, D.; Schiavelli, M. D. J. Org. Chem. 1977, 42, 3403–3408; (e)
Andres, J.; Cardenas, R.; Silla, E.; Tapia, O. J. Am. Chem. Soc. 1988, 110, 666–674;
(f) Yoshimatsu, M.; Naito, M.; Kawahigashi, M.; Shimizu, H.; Kataoka, T. J. Org.
Chem. 1995, 60, 4798–4802; (g) Cadierno, V.; Crochet, P.; García-Garrido, S. E.;
Gimeno, J. Dalton Trans. 2010, 39, 4015–4031.
(73 mg, 0.25 mmol) in a mixture of butanone/water (2.5 ml +
25 ll), then the reaction mixture was stirred at 60 °C for 12 h.
The solvent was removed at reduced pressure and CH2Cl2
(2.5 ml), followed by two crystals of I2 were added. After 2 h of stir-
ring at rt, the reaction mixture was quenched by the addition of a
saturated aqueous solution of Na2S2O3, then the aqueous layer was
extracted with CH2Cl2 (3 ꢀ 20 ml), and the combined organic lay-
ers were washed with brine, dried over Na2SO4, and concentrated
at reduced pressure. The crude product was purified by column
chromatography (pentane/Et2O 98:2) to give pure (E)-a-ionone 1,
identical with a commercial authentic sample (33 mg, 70%). 1H
NMR (300 MHz, CDCl3) d 0.87 (s, 3H), 0.94 (s, 3H), 1.19–1.29 (m,
1H), 1.47 (ddd, J = 13.3, 8.3, 8.1 Hz, 1H), 1.58 (q, J = 1.7 Hz, 3H),
2.0–2.10 (m, 2H), 2.26 (s, 3H), 2.30 (d, J = 9.2 Hz, 1H), 5.48–5.55
(m, 1H), 6.06 (d, J = 16.0 Hz, 1H), 6.63 (dd, J = 16.0, 9.2 Hz, 1H);
13C NMR (100 MHz, CDCl3) d 22.8 (q), 23.0 (t), 26.7 (q), 26.9 (q),
27.8 (q), 31.1 (t), 32.5 (s), 54.2 (d), 122.6 (d), 131.9 (s), 132.3 (d),
149.1 (d), 198.6 (s); HRMS calcd for C13H20O: 192.15142. Found:
192.15145.
10. Stefanoni, M.; Luparia, M.; Porta, A.; Zanoni, G.; Vidari, G. Chem. Eur. J. 2009, 15,
3940–3944. and references cited therein.
11. For a selection of recent reviews, see: (a) Li, Z.; Brouwer, C.; He, C. Chem. Rev.
2008, 108, 3239–3265; (b) Arcadi, A. Chem. Rev. 2008, 108, 3266–3325; (c)
Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766–1775.
12. (a) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221; (b) Hashmi, A. S. K.;
Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896–7936; (c) Hashmi, A. S. K.
Chem. Rev. 2007, 107, 3180–3211.
13. (a) Yu, M.; Li, G.; Wang, S.; Zhang, L. Adv. Synth. Catal. 2007, 349, 871–875; For a
review on propargylic esters in gold catalysis, see: (b) Marion, N.; Nolan, S. P.
Angew. Chem., Int. Ed. 2007, 46, 2750–2752.
14. Marion, N.; Carlqvist, P.; Gealageas, R.; de Frémont, P.; Maseras, F.; Nolan, S. P.
Chem. Eur. J. 2007, 13, 6437–6451.
Acknowledgments
15. (a) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L.
Angew. Chem., Int. Ed. 2008, 47, 718–721; (b) Marion, N.; Nolan, S. P. Chem. Soc.
Rev. 2008, 37, 1776–1782.
16. We are well aware that, in principle, the direct Meyer–Schuster rearrangement
of propargylic alcohol 4a could yield the expected enone 1; however, under our
conditions, a complex mixture was obtained, containing also an unidentified
The ERC (FUNCAT-Advanced Researcher grant to S.P.N.), the
EPSRC, and the MIUR (PRIN funds) are gratefully acknowledged
for the support of this work. S.P.N. is a Royal Society-Wolfson Re-
search Merit Award holder.
product, which is under investigation in our laboratories. For
a recent
application of the Meyer–Schuster rearrangement to the synthesis of natural
products, see: Ramón, R. S.; Gaillard, S.; Slawin, A. M. Z.; Porta, A.; D’Alfonso, A.;
Zanoni, G.; Nolan, S. P. Organometallics 2010, 29, 3665–3668.
17. Yu, M.; Zhang, G.; Zhang, L. Tetrahedron 2009, 65, 1846–1855.
18. For the synthesis of well-defined gold(I) complexes, see Ref. 15 and: (a)
Gaillard, S.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2010, 46, 2742–2744;
(b) Gaillard, S.; Bosson, J.; Ramón, R. S.; Nun, P.; Slawin, A. M. Z.; Nolan, S. P.
Chem. Eur. J. 2010, 16, 13729–13740.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
19. (a) Mézailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133–4136; (b) Leyva,
A.; Corma, A. J. Org. Chem. 2009, 74, 2067–2074.
1. (a) Ohloff, G. Scent and Fragrances: The Fascination of Fragrances and their
Chemical Perspectives; Springer: Berlin, 1994; (b) Pybus, D. H.; Sell, C. S. The
Chemistry of Fragrances; The Royal Society of Chemistry: London, 1999.
2. Bauer, K.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials, 4th
ed.; Wiley-VCH: Weinheim, Germany, 2001.
20. Hwang, S. W.; Adiyaman, M.; Khanapure, S. P.; Rokach, J. Tetrahedron Lett. 1996,
37, 779–782.
21. Nun, P.; Gaillard, S.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2010, 46,
9113–9115.