J. Am. Chem. Soc. 1998, 120, 4035-4036
4035
Triple Ion Formation in Localized Organolithium
Reagents
Hans J. Reich,* William H. Sikorski,
Birgir O¨ . Gudmundsson, and Robert R. Dykstra
Department of Chemistry, UniVersity of Wisconsin
Madison, Wisconsin 53706
ReceiVed December 8, 1997
A variety of aggregation motifs dominate the structural
chemistry of organolithium compounds. At least four distinct
modes of dimerization exist: the common 4-center dimers,1
6-center dimers as in 2-lithio-2-methyldithiane,2 solvent-bridged
dimers as in (LiBr)2‚(HMPA)3,3,4a and triple ions (lithium ate
complexes) of type R-Li-R-//Li+.5,6a,7 The reactivity of these
various dimers compared to monomers or higher aggregates is
usually unknown. Triple ions possess an intriguing combination
of features of both a dimer and a solvent-separated ion pair.
Several lithium amides,8,9a â-keto10 and â-imino9b enolates, and
a few other lithium reagents7b have been rigorously shown through
crystal structures or NMR data to form triple ions. Delocalized,
lithiocene-type sandwich structures are also known;6a,7a however,
there is only a single report of a localized carbanion triple ion:
a crystal structure was obtained of the triple ion of tris-
(trimethylsilyl)methyllithium.5 Here, we present NMR evidence
that triple ions form in THF/HMPA solution4b for a variety of
6
Figure 1. 6Li NMR (52.98 MHz) spectra15 of Li isotopically enriched
aryllithiums (0.16 M in 4:1 THF/ether at -125 °C with 2 equiv of
HMPA): (A) 1a; (B and C) 2:1 and 1:2 ratio of 1a and 2a; (D) 2a; (E)
phenyllithium with 5 equiv of HMPA.
localized lithiated carbanions, such as aryllithiums and sulfur-
and silicon-substituted alkyllithiums.
(1) Thoennes, D.; Weiss, E. Chem. Ber. 1978, 111, 3157.
(2) Amstutz, R.; Seebach, D.; Seiler, P.; Schweizer, W. B.; Dunitz, J. D.
Angew. Chem., Int. Ed. Engl. 1980, 19, 53. Eight-centered dimers are also
known: Boche, G.; Marsch, M.; Harms, K.; Sheldrick, G. M. Angew. Chem.
1985, 97, 577.
(3) Barr, D.; Doyle, M. J.; Mulvey, R. E.; Raithby, P. R.; Reed, D.; Snaith,
R.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1989, 318.
(4) (a) Reich, H. J.; Borst, J. P.; Dykstra, R. R. Organometallics 1994, 13,
1. (b) Reich, H. J.; Borst, J. P.; Dykstra, R. R.; Green, D. P. J. Am. Chem.
+
2,6-Diisopropylphenyllithium (1a) is monomeric: the 13C NMR
spectrum of 6Li-enriched 1a at -125 °C in 4:1 THF/ether shows
a 1:1:1 triplet (JC-Li ) 14.6 Hz) at 193.3 ppm for the ipso carbon,
demonstrating connectivity to a single 6Li (spin ) 1) nucleus.6b,11
Soc. 1993, 115, 8728. (c) The free Li(HMPA)4 signal (but not the phenyl-
coordinated lithium) of 1c was detected in an earlier study of PhLi: Reich,
H. J.; Green, D. P.; Phillips, N. H. J. Am. Chem. Soc. 1989, 111, 3444. (d)
Reich, H. J.; Green, D. P.; Phillips, N. H. J. Am. Chem. Soc. 1991, 113, 1414,
footnote 16. (e) Reich, H. J.; Kulicke, K. J. J. Am. Chem. Soc. 1995, 117,
6621. (f) For detection of a P-Li-P coupling in a 4-centered dimer, see:
Reich, H. J.; Dykstra, R. R. Organometallics 1994, 13, 4578.
(5) Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sullivan, A. C. J. Chem.
Soc., Chem. Commun. 1983, 827. The triple ion structure of (Me3Si)3CLi is
at least partially maintained in solution: Avent, A. G.; Eaborn, C.; Hitchcock,
P. B.; Lawless, G. A.; Lickiss, P. D.; Mallien, M.; Smith, J. D.; Webb, A. D.;
Wrackmeyer, B. J. Chem. Soc., Dalton Trans. 1993, 3259. Buttrus, N. H.;
Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Stamper, J. G.; Sullivan, A. C. J.
Chem. Soc., Chem. Commun. 1986, 969.
6
Figure 1A shows the Li spectrum of 1a in the presence of 2
equiv of HMPA. A singlet at 1.8 ppm is seen for the monomer,12
but there are two additional signals present in a 1:1 ratio,
consistent with a triple ion of structure 2a: a singlet at 4.6 ppm
for the internal lithium and a quintet at -0.4 ppm for the external
lithium (coupled to four coordinated HMPA molecules).4b The
carbon NMR shows discrete 1:1:1 triplets for the carbanionic
carbon of the putative triple ion (δ 197.7, J ) 13.7 Hz).
Compound 1b is also monomeric,13 and the addition of HMPA
has a similar effect. Figure 1-D shows that with 2 equiv of
HMPA, 73% of the monomer was converted to triple ion (internal
lithium at δ 4.3).14
Support of our assignment comes from NMR studies of
mixtures of these two aryllithiums. Thus, 1a and 1b were mixed
in a 2:1 and a 1:2 ratio in the presence of 2 equiv of HMPA
(Figure 1B,C). The mixed experiments show three distinct signals
for the internal lithium, the middle one belonging to the mixed
triple ion 3. The mirror-like appearance of the two spectra is
(6) (a) Fraenkel, G.; Hallden-Abberton, M. P. J. Am. Chem. Soc. 1981,
103, 5657. (b) Fraenkel, G.; Henrichs, M.; Hewitt, J. M.; Su, B. M.; Geckle
M. J. J. Am. Chem. Soc. 1980, 102, 3345.
(7) (a) Eiermann, M.; Hafner, K. J. Am. Chem. Soc. 1992, 114, 135. Harder,
S.; Prosenc, M. H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1744. Zaegel, F.;
Gallucci, J. C.; Meunier, P.; Gautheron, B.; Sivik, M. R.; Paquette, L. A. J.
Am. Chem. Soc. 1994, 116, 6466. Hoic, D. A.; Davis, W. M.; Fu, G. C. J.
Am. Chem. Soc. 1995, 117, 8480. (b) Veith, M.; Ruloff, C.; Huch, V.; To¨llner,
F. Angew. Chem., Int. Ed. Engl. 1988, 27, 1381. Pauer, F.; Rocha, J.; Stalke,
D. J. Chem. Soc., Chem. Commun. 1991, 1477. Gornitzka, H.; Stalke, D.
Angew. Chem., Int. Ed. Engl. 1994, 33, 693.
(8) Jackman, L. M.; Scarmoutzos, L. M.; Smith, B. D.; Williard, P. G. J.
Am. Chem. Soc. 1988, 110, 6058. Jackman, L. M.; Scarmoutzos, L. M.; Porter,
W. J. Am. Chem. Soc. 1987, 109, 6524.
(9) (a) Romesberg, F. E.; Bernstein, M. P.; Gilchrist, J. H.; Harrison, A.
T.; Fuller, D. J.; Collum, D. B. J. Am. Chem. Soc. 1993, 115, 3475. Romesberg,
F. E.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. J. Am.
Chem. Soc. 1991, 113, 5751. Romesberg, F. E.; Collum, D. B. J. Am. Chem.
Soc. 1995, 117, 2166. (b) Galiano-Roth, A. S.; Collum, D. B. J. Am. Chem.
Soc. 1988, 110, 3546.
(12) The coupling to the phosphorus nuclei of two HMPA molecules is
not resolved because of rapid exchange with free HMPA.
(13) A study which revealed it to be dimeric was based on a much more
concentrated (3.0 M) solution: Wehman, E.; Jastrzebski, J. T. B. H.; Ernsting,
J.-M.; Grove, D. M.; van Koten, G. J. Organomet. Chem. 1988, 353, 133.
(14) Quenching a sample of 1b with 3 equiv of HMPA (80% conversion
to 2b) with Me2S2 produced 87% of 2,6-dimethylthioanisole; therefore, the
signal assigned to the triple ion is a structural form of the aryllithium and not
a decomposition product. Similarly, 1a with 2 equiv of HMPA (75% of 2a)
gave 75% of the sulfide.
(10) Raban, M.; Noe, E. A.; Yamamoto, G. J. Am. Chem. Soc. 1977, 99,
6527. Raban, M.; Haritos, D. P. J. Am. Chem. Soc. 1979, 101, 5178. Cambillau,
C.; Bram, G.; Corset, J.; Riche, C. NouV. J. Chim. 1979, 3, 9. Cambillau, C.;
Ourevitch, M. J. Chem. Soc., Chem. Commun. 1981, 996. Teixidor, F.; Llobet,
A.; Casabo´, J.; Solans, X.; Font-Altaba, M.; Aguilo´, M. Inorg. Chem. 1985,
24, 2315.
(11) Bauer, W.; Winchester, W. R.; Schleyer, P. v. R. Organometallics
1987, 6, 2371.
(15) Lithium NMR spectra were referenced to external 0.3 M LiCl in
methanol.
S0002-7863(97)04138-3 CCC: $15.00 © 1998 American Chemical Society
Published on Web 04/09/1998