Crystal Growth & Design
ARTICLE
Table 4. IR Stretching Frequencies of NꢀH Group in Co-
crystallographic CIF files. This material is available free of charge
crystal Compared to the Starting Sulfonamide
primary sulfonamide
NꢀH stretch in
’ AUTHOR INFORMATION
NꢀH stretch
N-oxide cocrystal
Corresponding Author
*E-mail: ashwini.nangia@gmail.com.
FUROS
3400.0, 3351.0
3364.3, 3261.0
3347.2, 3270.1
3356.0, 3254.0
3325.7, 3243.0
3400.0, 3351.0
FUROSꢀBPNO
3392.7, 3326.0
3286.6, 3194.2
3297.2
2-BBS
4-MBS
2-CBS
PTS
2-BBSꢀBPNO
4-MBSꢀBPNO
2-CBSꢀBPNO
PTSꢀBPNO
3332.7, 3240.3
3290.0, 3238.1
3390.2, 3316.1
’ ACKNOWLEDGMENT
N.R.G. and N.J.B. thank the CSIR and UGC for fellowship.
We thank the DST (SR/S1/RFOC-01/2007 and SR/S1/OC-
67/2006) and CSIR (01(2079)/06/EMRII) for research fund-
ing, and DST (IRPHA) and UGC (PURSE grant) for instru-
mentation and infrastructure facilities.
FUROS
FUROSꢀINICNO
’ EXPERIMENTAL SECTION
Cocrystal Preparation. Starting materials were purchased from
commercial suppliers. Pyridine N-oxides were prepared by the oxidation
of the corresponding pyridines with m-CPBA. The crystallization scale,
number of experiments carried out, and the conditions used are
summarized in Table 3. A full list of experiments, crystallization
conditions and results are given in Table S4 (Supporting Information).
Broadly, two methods were adopted: (1) the components were dis-
solved in a suitable solvent and crystallization of new crystals was
examined, and (2) the components were ground with a few drops of
solvent added, and then the material was dissolved in a solvent for single
crystals to appear. The formation of a new crystalline phase was
monitored by changes in sulfonamide NH IR bands from starting
material to the product cocrystal followed by diffraction and spectro-
scopic confirmation as shown in Table 4.
X-ray Crystal Structure. Reflections were collected on a Bruker
SMART APEX-CCD diffractometer. MoꢀKR (λ = 0.71073 Å) radia-
tion was used to collect X-ray reflections on the single crystal. Data
reduction was performed using Bruker SAINT software.26 Intensities for
absorption were corrected using SADABS.27 RLATT3 and CELL_
NOW programs28 were used to generate a new reindexed cell for the
structure MBSꢀBPNO, which was used during initialization and mer-
ging of raw data. Crystal structures were solved by direct methods and
refined on F2 with SHELXS-97 and SHELXL-97 programs29 to give
satisfactory R factor. Hydrogen atoms on O and N were experimentally
located in difference electron density maps. All CꢀH atoms were fixed
geometrically using HFIX command in SHELX-TL. In the modeled
structure FUROSꢀINICNO the disorder was modeled for all the heavy
atoms with isotropic displacement parameters using the PART com-
mand by assigning sof (site occupancy factor) of 0.5 and 0.5 for the two
parts using the FVAR command. A check of the final CIF file using
PLATON30 did not show any missed symmetry. X-Seed31 was used to
prepare packing diagrams.
’ REFERENCES
(1) Desiraju, G. R. Angew. Chem., Int. Ed. 1995, 34, 2311.
(2) Walsh, R. D. B.; Bradner, M. W.; Fleischman, S. G.; Morales,
L. A.; Moulton, B.; Rodriguez-Hornedo, N.; Zaworotko, M. J. Chem.
Commun. 2003, 186.
(3) Allen, F. H.; Motherwell, W. D. S.; Raithby, P. R.; Shields, G. P.;
Taylor, R. New. J. Chem. 1999, 23, 25.
(4) Cambridge Crystallographic Data Center, Cambridge, U.K.,
(5) (a) Nangia, A.; Desiraju, G. R. Top. Curr. Chem. 1998, 198, 57.
(b) Nangia, A.; Desiraju, G. R. Acta Crystallogr., Sect. A 1998, 54, 934.
(6) (a) Etter, M. C.; Macdonald, J. C.; Bernstein, J. Acta Crystallogr.,
Sect. B 1990, 46, 256. (b) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang,
N. L. Angew. Chem., Int. Ed. 1995, 34, 1555.
(7) (a) Etter, M. C. J. Phys. Chem. 1991, 95, 4601. (b) Etter, M. C.
Acc. Chem. Res. 1990, 23, 120.
(8) (a) Fleischman, S. G.; Kuduva, S. S.; McMahon, J. A.; Moulton,
B.; Walsh, R. D. B.; Rodriguez-Hornedo, N.; Zaworotko, M. J. Cryst.
Growth Des. 2003, 3, 909. (b) Vishweshwar, P.; McMahon, J. A.; Bis,
J. A.; Zaworotko, M. J. J. Pharm. Sci. 2006, 95, 499.
(9) (a) Bhogala, B. R.; Vishweshwar, P.; Nangia, A. Cryst. Growth
€
Des. 2002, 2, 325. (b) Almarsson, O.; Zaworotko, M. J. Chem. Commun.
2004, 1889. (c) Aaker€oy, C. B.; Salmon, D. J. CrystEngComm 2005,
7, 439. (d) Bhogala, B. R.; Nangia, A. New J. Chem. 2008, 32, 800.
(e) Aaker€oy, C. B.; Beatty, A. M.; Helfrich, B. A. Angew. Chem., Int. Ed.
2001, 40, 3240.
(10) (a) Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun.
2006, 1369. (b) Babu, N. J.; Reddy, L. S.; Nangia, A. Mol. Pharmaceutics
2007, 4, 417. (c) Babu, N. J.; Reddy, L. S.; Aitipamula, S.; Nangia, A.
Chem. ꢀ An Asian J. 2008, 3, 1122.
(11) Nangia, A. J. Chem. Sci. 2010, 122, 295.
Vibrational Spectroscopy. Nicolet 6700 FT-IR spectrometer
with a NXR FT-Raman and NIR Module was used to record IR and
Raman and NIR spectra. IR and NIR spectra were recorded on samples
dispersed in KBr pellets. Raman spectra were recorded on samples
contained in standard NMR diameter tubes or on compressed samples
contained in a gold-coated sample holder.
Thermogravimetric Analysis. TGA was performed on a Mettler
Toledo TGA/SDTA 851e module. The sample 8ꢀ12 mg was placed in
open alumina pan and the temperature increased from 30 to 400 °C at
heating rate of 5 °C/min. The sample was purged by a stream of dry
nitrogen at flow rate of 50 mL/min.
(12) (a) Yang, S. S.; Guillory, J. K. J. Pharm. Sci. 1972, 61, 26. (b) Ko,
S.-K.; Jin, H. J.; Jung, D.-W.; Tian, X.; Shin, I. Angew. Chem., Int. Ed.
2009, 48, 7809. (c) Caira, M. R. Mol. Pharmaceutics 2007, 4, 310.
(d) Byrn, S. R.; Pfeiffer, R. R.; Stowell, J. G. Solid-State Chemistry of
Drugs; SSCI, Inc.: West Lafayette, IN, 1999; p 160.
(13) (a) Ishida, T.; In, Y.; Doi, M.; Inoue, M.; Yanagisawa, I. Acta
Crystallogr., Sect. B 1989, 45, 505. (b) Leger, J. M.; Alberola, S.; Carpy, A.
Acta Crystallogr. 1977, B33, 1455. (c) Alberola, S.; Sabon, F.; Jaud et, J.;
Galy, J. Acta Crystallogr. 1977, B33, 3337. (d) Caira, M. R. J. Chem.
Crystallogr. 1994, 24, 695. (e) Caira, M. R.; Nassimbeni, L. R.; Wild-
erwanck, A. F. J. Chem. Soc., Perkin Trans. 1995, 2, 2213. (f) Caira, M. R.
J. Crystallogr. Spectrosc. Res. 1992, 22, 193.
(14) Eccles, K. S.; Elcoate, C. J.; Stokes, S. P.; Maguire, A. R.;
Lawrence, S. E. Cryst. Growth Des. 2010, 10, 4243.
(15) (a) Reddy, L. S.; Basavoju, S.; Vangala, V. R.; Nangia, A. Cryst.
Growth Des. 2006, 6, 161. (b) Videnova-Adrabiꢀnska, V.; Janeczko, E.
Chem. Commun. 1999, 1527. (c) Custelcean, R.; Moyer, B. A.; Bryantsev,
V. S.; Hay, B. P. Cryst. Growth Des. 2006, 6, 555. (d) Custelcean, R.
’ ASSOCIATED CONTENT
S
Supporting Information. IR, NIR, and Raman spectra;
b
table of crystallization experiments; TGA curve (PDF);
1938
dx.doi.org/10.1021/cg200094x |Cryst. Growth Des. 2011, 11, 1930–1939