ent-kaurene, which undergoes skeletal and functional
group transformations to at least 136 products with only
a few of them displaying biological activities (Figure 1B).7
In a research program targeting concise synthesis of
natural product-inspired8 focused compound collections
for chemical biology research, we devised a biosynthesis-
inspired synthesis strategy wherein a common intermedi-
ate scaffold would be efficiently transformed into diverse
naturally occurring ring systems. Here we present an
efficient and concise synthesis access tonaturally occurring
benzopyrone9 and related scaffolds employing easily ac-
cessible primary substrates.
(Figure 2). To this end, we explored a phosphine-catalyzed
[4 þ 2] annulation reaction of the zwitterion (4) (generated
by addition of phosphine11 to allene ester 3) with 4H-
chromen-4-one 1 (Scheme 1). Recently, Kwon et al. have
demonstrated the feasibility of the annulation of4 with1,1-
dicyanoolefins;12 however, further scope of this annulation
remains unexplored.13 The reaction of 4 with chromone 1,
to our disappointment, did not yield any desired product
even under forcing reaction conditions. We reasoned that
vinylogous ester 1 might not be sufficiently electron-defi-
cient to receive a nucleophilic attack of the zwitterion 4 at
the C-2 position. Gratifyingly, employing more electron-
deficient 3-formylchromone 2, we observed a cascade
reaction sequence of [4 þ 2] annulation of the zwitterion
4a (R3 = CO2Et) with 2 followed by deformylation to
provide the desired scaffold 8a in excellent yield (Table 1)
and with good diastereoselectivity (∼8:1).
Differently substituted chromones (2) yielded the cas-
cade annulation adducts 8aꢀe in moderate to very good
yields (Table 1) and with high diastereoselectivities (see
Supporting Information).
Scheme 1. Phosphine-Catalyzed Cascade Synthesis of Common
Benzopyrone Scaffold
Figure 2. Natural products embodying benzopyrone and related
frameworks and the common scaffold to access diverse natural
ring systems.
A structural analysis of the natural products embodying
diverse benzopyrone10 scaffolds led us to choose the
tricyclic cyclohexene-fused-chromone ring as the common
scaffold for further elaboration into natural ring systems
(7) (a) Combs, A. P.; Kapoor, T. M.; Feng, S. B.; Chen, J. K.;
DaudeSnow, L. F.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 287–
288. (b) Tudzynski, B. Appl. Microbiol. Biot. 2005, 66, 597–611. (c)
Hedden, P.; Phillips, A. L.; Rojas, M. C.; Carrera, E.; Tudzynski, B.
J. Plant Growth Regul. 2001, 20, 319–331.
(8) Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2009, 48,
3224–3242.
€
€
(9) Waldmann, H.; Khedkar, V.; Duckert, H.; Schurmann, M.;
Oppel, Iris, M.; Kumar, K. Angew. Chem., Int. Ed. 2008, 47, 6869–6872.
(10) (a) Kesarkar, S.; Bhandage, A.; Deshmukh, S.; Shevkar, K.;
Abhyankar, M. J. Pharm. Res. 2009, 2, 1148–54. (b) Overy, D.; Calati,
K.; Kahn, J. N.; Hsu, M. J.; Martin, J.; Collado, J.; Roemer, T.; Harris,
G.; Parish, C. A. Bioorg. Med. Chem. Lett. 2009, 19, 1224–1227. (c)
Phuwapraisirisan, P.; Udomchotphruet, S.; Surapinit, S.; Tip-Pyang, S.
Nat. Prod. Res. 2006, 20, 1332–1337. (d) Phuwapraisirisan, P.; Sawang,
K.; Siripong, P.; Tip-Pyang, S. Tetrahedron Lett. 2007, 48, 5193–5195.
(e) Pritchard, R. G.; Sheldrake, H. M.; Taylor, I. Z.; Wallace, T. W.
Tetrahedron Lett. 2008, 49, 4156–4159. (f) Parish, C. A.; Smith, S. K.;
Calati, K.; Zink, D.; Wilson, K.; Roemer, T.; Jiang, B.; Xu, D. M.; Bills,
G.; Platas, G.; Pelaez, F.; Diez, M. T.; Tsou, N.; McKeown, A. E.; Ball,
R. G.; Powles, M. A.; Yeung, L.; Liberator, P.; Harris, G. J. Am. Chem.
Soc. 2008, 130, 7060–7066. (g) Sato, S.; Suga, Y.; Yoshimura, T.;
Nakagawa, R.; Tsuji, T.; Umemura, K.; Andoh, T. Bioorg. Med. Chem.
Lett. 1999, 9, 2653–2656. (h) Horak, R. M.; Steyn, P. S.; Vleggaar, R.;
Rabie, C. J. J. Chem. Soc., Perkin Trans. 1 1985, 363–367.
Allene ester 3b also underwent the cascade annulation,
smoothly yielding adducts 8fꢀi supporting a phenyl sub-
stitution on cyclohexene ring of the tricyclic benzopyrones
in good yields and diastereoselectivities (for spectroscopic
(12) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632–
12633.
(11) (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535–544.
(b) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T.
Acc. Chem. Res. 2006, 39, 520–530. (c) Methot, J. L.; Roush, W. R. Adv.
Synth. Cat. 2004, 346, 1035–1050.
(13) (a) Zhang, Q.; Yang, L.; Tong, X. J. Am. Chem. Soc. 2010, 132,
2550–2551. (b) Guo, H. C.; Xu, Q. H.; Kwon, O. J. Am. Chem. Soc. 2009,
131, 6318–6319. (c) Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7, 4289–4291.
(d) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234–12235.
Org. Lett., Vol. 13, No. 8, 2011
1989