542
K. Park et al. / Bioorg. Med. Chem. Lett. 23 (2013) 537–542
and dogs established mean clearance ranging from 0.15 to 0.43 L/
h/kg, distribution volume ranging from 0.33 to 0.49 L/kg, elimina-
tion half-life ranging from 2.6 to 3.7 h, and bioavailability (F) rang-
ing from 66% to 144%. There was no significant pharmacokinetic
difference observed between mice and dogs. Overall, YH-GKA
exhibited high bioavailability and moderate elimination in preclin-
ical species. In vitro examination of CYP inhibition and induction
suggested that YH-GKA has low risk of drug–drug interactions in
humans. These results indicate that YH-GKA has a highly favorable
pharmacokinetic profile for an oral anti-diabetic agent. Unsurpris-
ingly, YH-GKA (EC50 = 70 nM, T1/2 = 2.6 h and F = 85% in dog) pos-
sesses comparable potency, physicochemical property and
Economy, Republic of Korea (C-2-1, 500108, 7007618). We thank
Mr. Kyeong Bae Kim and Dr. Su Youn Nam for their helpful
discussion.
References and notes
1. Kahn, S. E.; Hull, R. L.; Utzschneider, K. M. Nature 2006, 444, 840.
2. Lebovitz, H. E. Joslin’s Diabetes Mellitus, 14th ed.; Lippincott Williams & Wilkins:
Philadelphia, PA, 2005. P 687.
3. Ralph, E. C.; Thomson, J.; Almaden, J.; Sun, S. Biochemistry 2008, 47, 5028.
4. Matschinsky, F. M. Diabetes 1996, 45, 223.
5. Heredia, W.; Thomson, J.; Nettleton, D.; Sun, S. Biochemistry 2006, 45, 7553.
6. Matschinsky, F. M.; Glaser, B.; Magnuson, M. A. Diabetes 1998, 47, 307.
7. Pfefferkorn, J. A.; Guzman-Perez, A.; Litchfield, J.; Aiello, R.; Treadway, J. L.;
Pattersen, J.; Minich, M. L.; Filipski, K. J.; Jones, C. S.; Tu, M.; Aspnes, G.; Sweet,
L.; Liras, S.; Rolph, T. P., et al J. Med. Chem. 2012, 55, 1318.
pharmacokinetic profiles with 6 (GKA-60, EC50 = 90 nM, T1/2
=
4.9 h and F = 100% in dog)18 presumably due to the structural
similarity. Since Waring et al. recently reported that pyridine-5-
carboxylic acid containing GKAs (e.g., 6, GKA-60) might cause testic-
ular toxicology,21 the testicular toxicity test for YH-GKA will be
monitored carefully and the results will be reported in due course.
In summary, YH-GKA was found to be an active GKA with EC50
of 70 nM and showed glucose reduction of 29.6% (50 mg/kg) in an
OGTT study, equivalent to 300 mg/kg metformin. Acute treatment
in C57BL/J6 and ob/ob mice elicited basal glucose lowering activity.
Also YH-GKA showed significant decrease in blood glucose levels
and no adverse effects on serum lipids or body weight at a sub-
chronic study in ob/ob mice. In addition, YH-GKA exhibited high
bioavailability and moderate elimination in mice and dogs. In con-
clusion, YH-GKA is a promising preclinical lead candidate for type 2
diabetes mellitus. To identify additional preclinical GKA candidates
with better efficacy and improved safety profile without hypogly-
cemia risk, we are performing further lead optimization of the
benzamide scaffold by utilizing an innovative and translational
screening strategy containing optimized in vitro, ex vivo, in vivo
biological assays. The study results from this new strategy will
be reported soon.
8. Massa, M. L.; Gagliardino, J. J.; Francini, F. Life 2011, 63, 1.
9. Bebernitz, G. R.; Beaulieu, V.; Dale, B. A.; Deacon, R.; Duttaroy, A.; Gao, J.;
Grondine, M. S.; Gupta, R. C.; Kakmak, M.; Kavana, M.; Kirman, L. C.; Liang, J.;
Maniara, W. M.; Munshi, S.; Nadkarni, S. S.; Schuster, H. F.; Stams, T.; Denny, I.,
St; Taslimi, P. M.; Vash, B.; Caplan, S. L. J. Med. Chem. 2009, 52, 6142.
10. (a) Fyfe, M. C. T.; Procter, M. J. Drugs Future 2009, 34, 641; (b) Matschinsky, F.
Nat. Rev. Drug Disc. 2009, 8, 399.
11. Iino, T.; Hashimoto, N.; Hasegawa, T.; Chiba, M.; Eiki, J.; Nishimura, T. Bioorg.
Med. Chem. Lett. 2010, 20, 1619.
12. Sidduri, A.; Grimsby, J. S.; Corbett, W. L.; Sarabu, R.; Grippo, J. F.; Lou, J.; Kester,
R. F.; Dvorozniak, M.; Marcus, L.; Spence, C.; Racha, J. K.; Moore, D. J. Bioorg.
Med. Chem. Lett. 2010, 20, 5673.
13. Grimsby, J.; Sarabu, R.; Corbett, W. L.; Hayne, N. E.; Bizzarro, F. T.; Coffey, J. W.;
Guertin, K. R.; Hilliard, D. W.; Kester, R. F.; Mahaney, P. E.; Marcus, L.; Qi, L. D.;
Soence, C. L.; Tengi, J.; Magnuson, M. A.; Chu, C. A.; Dvorozniak, M. T.;
Matschinsky, F. M.; Grippo, J. F. Science 2003, 301, 370.
14. Sarabu, R.; Tilley, J. W.; Grimsby, J. RSC Drug Discovery Ser. 2011, 4, 51.
15. Mitsuya, M.; Kamata, K.; Bamba, M.; Watanabe, H.; Sasaki, Y.; Sasaki, K.;
Ohyama, S.; Hosaka, H.; Nagata, Y.; Eiki, J.; Nishimura, T. Bioorg. Med. Chem.
Lett. 2009, 19, 2718.
16. Waring, M. J.; Johnstone, C.; McKerrecher, D.; Pike, K. G.; Robb, G. R. Med. Chem.
Commun. 2011, 2, 775.
17. Meininger, G. E.; Scott, R.; Alba, R.; Shentu, Y.; Luo, E.; Amin, H.; Davies, M. J.;
Kaufman, K. D.; Goldstein, B. J. Diabetes Care 2011, 34, 2560.
18. Pike, K. G.; Allen, J. V.; Caulkett, P. W.; Clarke, D. S.; Donald, C. S.; Fenwick, M. L.;
Johnson, K. M.; Johnstone, C.; McKerrecher, D.; Rayner, J. W.; Walker, R. P.;
Wilson, I. Bioorg. Med. Chem. Lett. 2011, 11, 3467.
19. Winzell, M. S.; Coghlan, M.; Leighton, B.; Frangioudakis, G.; Smith, D. M.;
Storlien, L. H.; Ahrén, B. Eur. J. Pharmacol. 2011, 663, 80.
20. Yi, W. -H.; Han, T. -D.; Lee, K. -Y.; Kim, Y. -H.; Jung, E. -H.; Lee, D. -H.; Park, Y. -
H.; Min, K. -N.; Kim, J. -K.; Lee, B. -K. WO 2011/081280 A2, 2011.
21. Waring, M. J.; Brogan, I. J.; Coghlan, M.; Johnstone, C.; Jones, H. B.; Leighton, B.;
Mckerrecher, D.; Pike, K. G.; Robb, G. R. Med. Chem. Commun. 2011, 2, 771.
Acknowledgments
This study was supported by a Grant of Chungcheong Leading
Industry Office for Medicine & Bio Projects, Ministry of Knowledge