Please do not adjust margins
Journal of Materials Chemistry A
Page 8 of 10
DOI: 10.1039/C6TA01035K
ARTICLE
Journal Name
volumetric uptake (1.62 mmol g-1, 7.13 wt% at 298 K, 1 bar;
2.39 mmol g-1, 10.5 wt% at 273 K) with high isosteric heat of
adsorption (40.0 kJ mol-1). Pd-tapp-A4 aerogel also shows
improved adsorption capacities for H2 and C2H4. Vapour
sorption shows that H2tapp-A4 aerogel show good adsorption
ability for both aromatic benzene and polar methanol at
saturated vapour pressure and room temperature.
7
8
W. Luo, Y. Zhu, J. Zhang, J. He, Z. Chi, P. W. Miller, L. Chen
and C. Y. Su, Chem. Commun., 2014, 50, 11942-11945
(a) F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klöck, M.
O’Keeffe, M. Omar and O. M. Yaghi, J. Am. Chem. Soc., 2009,
131, 4570–4571; (b) S. Kandambeth, V. Venkatesh, D. B.
Shinde, S. Sushma Kumari, A.Halder, S. Verma and R.
.
Banerjee, Nature Commun., 2015, 6, 6786; (c) S. Y. Ding, J.
Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su and W. Wang, J.
Am. Chem. Soc., 2011, 133, 19816–19822; (d) P. Taynton, K.
Yu, R. K. Shoemaker, Y. H. Jin, H. J. Qi and W. Zhang, Adv.
Mater., 2014, 26, 3938–3942.
N. U. Day, C. C. Wamser and M. G. Walter, Poly. Int., 2015,
64, 833–857.
The present hierarchically porous gels are prepared under
relatively mild synthesis conditions. It is thus possible to obtain
some materials (e.g., free-base porphyrin porous materials)
that are difficult to synthesize under other synthesis conditions
(e.g., at higher temperature and/or in the presence of metal
ions).33 The unique hierarchical porosity of gels offers better
diffusion channels for guest molecules than the related
microporous materials (e.g., MOFs), which enhances mass
transfer. Pd-tapp-A4 gel catalyst and microfluidic technique
have been successfully combined in the catalytic gel
microfluidic reactor. In the microfluidic reactor, a layer of Pd-
tapp-A4 gel is coated onto a functionalized capillary. In the gel
capillary reactor similar yields were achieved in much shorter
reaction time in Suzuki-Miyaura cross-coupling of 4-
bromoanisole and phenylboronic acid compared to the batch
processes. These materials thus show potential applications
not only in gas storage, but also in supported catalysis. The
present strategy may help develop new metal-decorated
polymeric materials.34
9
10 X. M. Liu, H. Li, Y. Zhang, B. Xu, A. Sigen, H. Xia and Y. Mu,
Polym. Chem., 2013, , 2445–2448.
11 A. Modak, M. Pramanik, S. J. Inagaki and A. Bhaumik, J.
Mater. Chem. A, 2014, , 11642–11650.
12 (a) L. Chen, Y. Yang and D. L. Jiang, J. Am. Chem. Soc., 2010,
132, 9138–9143; (b) X. S. Wang, M. Chrzanowski, D. Yuan, B.
S. Sweeting and S. Ma, Chem. Mater., 2014, 26, 1639−1644;
(c) J. Yoo, N. Park, J. H. Park, J. H. Park, S. Kang, S. M. Lee, H.
4
2
J. Kim, H. Jo, J. G. Park and S. U. Son, ACS Catal., 2015,
350−355; (d) S. Kandambeth, D. B. Shinde, M. K. Panda, B.
5,
Lukose and T. Heine, Angew. Chem. Int. Ed., 2013, 52
13052–13056.
,
13 (a) W. Y. Gao, M. Chrzanowski and S. Q. Ma, Chem. Soc. Rev.,
2014, 43, 5841-5866; (b) C. Zou and C. D. Wu, Dalton Trans.,
2012, 41, 3879-3888.
14 X. S. Wang, M. Chrzanowski, W. Y. Gao, L. Wojtas, Y. S. Chen,
M. J. Zaworotko and S. Q. Ma, Chem. Sci., 2012, 3, 2823-
2827.
15 (a) D. H. Lee, S. Kim, M. Y. Hyun, J. Y. Hong, S. Huh, C. Kim
and S. J. Lee, Chem. Commun., 2012, 48, 5512–5514; (b) J. A.
Johnson, X. Zhang, T. C. Reeson, Y. S. Chen and J. Zhang, J.
Am. Chem. Soc., 2014, 136, 15881−15884; (c) G. Nandi and I.
Goldberg, Chem. Commun., 2014, 50, 13612—13615.
16 (a) D. E. Williams, J. A. Rietman, J. M. Maier, R. Tan, A. B.
Greytak, M. D. Smith, J. A. Krause and N. B. Shustova, J. Am.
Chem. Soc., 2014, 136, 11886–11889; (b) X. Ding and B. H.
Han, Angew. Chem. Int. Ed., 2015, 54, 6536–6539.
Acknowledgements
We acknowledge the 973 Program (2012CB821701), the NSFC
(51573216, 21273007, 21103233 and 91222201), the Program
for New Century Excellent Talents in University (NCET-13-
0615), the NSF of Guangdong Province (S2013030013474) and
the FRF for the Central Universities (14lgpy05) for support.
17 A. Bettelheim, B. A.White, S. A. Raybuck and R. W. Murray,
Inorg. Chem., 1987, 26, 1009-1017.
18 (a) A. D. Adler, F. R. Longo, F. Kampas and J. Kim, J. Inorg.
Nucl. Chem., 1970, 32, 2443–2445; (b) F. Zadehahmadi, F.
Ahmadi, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I.
M. Baltork and R. Kardanpour, J. Mol. Catal. A Chem., 2015,
398, 1-10; (c) W. Meng, B. Breiner, K. Rissanen, J. D.
Thoburn, J. K. Cleggand and J. R. Nitschke, Angew. Chem.,
2011, 123, 3541–3545; (d) V. A. Ol’shevskaya, A. V. Zaitsev,
Y. V. Dutikova, V. N. Luzgina, E. G. Kononova, P. V. Petrovsky
Notes and references
1
(a) N. Hüsing and U. Schubert, Angew. Chem. Int. Ed., 1998,
37, 22-45; (b) A. C. Pierre and G. M. Pajonk, Chem. Rev.,
2002, 102, 4243-4265.
2
(a) X. T. Zhang, Z. Y. Sui, B. Xu, S. F. Yue, Y. J. Luo, W. C. Zhan
and B. Liu, J. Mater. Chem., 2011, 21, 6494–6497; (b) T. Wu,
M. G. Chen, L. Zhang, X. Y. Xu, Y. Liu, J. Yan, W. Wang and J.
and V. N. Kalinin, Macroheterocycles, 2009, 2, 221-227; (e) D.
P. Gao, J. Mater. Chem. A, 2013, 1, 7612–7621; (c) S.
Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutiérrez and F.
D. Monte, Chem. Soc. Rev., 2013, 42, 794-830.
(a) J. L. Mohanan, I. U.Arachchige and S. L. Brock, Science,
2005, 307, 397-400; (b) S. Bag, P. N. Trikalitis, P. J. Chupas, G.
S. Armatas and M. G. Kanatzidis, Science, 2007, 317, 490-
493; (c) K. S. Subrahmanyam, D. Sarma, C. D. Malliakas, K.
Polychronopoulou, B. J. Riley, D. A. Pierce, J. Chun and M. G.
Kanatzidis, Chem. Mater., 2015, 27, 2619-2626; (d) E. Ahmed
W. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei and H. C. Zhou,
Angew. Chem. Int. Ed., 2012, 51, 10307-10310.
19 P. Pandey, A. P. Katsoulidis, I. Eryazici, Y. Y. Wu, M. G.
Kanatzidis and S. T. Nguyen, Chem. Mater., 2010, 22, 4974–
4979.
20 T. Muller and S. Brse, RSC Adv., 2014, 4, 6886–6907.
21 J. Landers, J. Y. Gor and A. V. Neimark, Colloids Surfaces A
Physicochem. Eng. Aspects, 2013, 437, 3–32.
22 R. K. Totten, L. L. Olenick, Y. S. Kim, S. Chakraborty, M. H.
Weston, O. K. Farha, J. T. Hupp and S. B. Nguyen, Chem. Sci.,
2014, 5, 782-787.
23 P. Terech, C. Scherer, B. Demé and R. Ramasseul, Langmuir,
2003, 19, 10641-10647.
3
4
and A. Rothenberger, J. Mater. Chem. A, 2015,
(a) J. Zhang and C. Y. Su, Coord. Chem. Rev., 2013, 257
1373–1408; (b) L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L.
Chen and C. Y. Su, Nature Commun., 2013, , 1774.
J. Zhang, L. Liu, H. Liu, M. Lin, S. Li, G. Ouyang, L. Chen and C.
Y. Su, J. Mater. Chem. A, 2015, , 10990-10998.
H. Liu, J. Feng, J. Zhang, P. W. Miller, L. Chen and C. Y. Su,
Chem. Sci., 2015, , 2292-2296.
3, 7786–7792.
,
4
5
6
24 (a) A. Kondo, A. Chinen, H. Kajiro, T. Nakagawa, K. Kato, M.
Takata, Y. Hattori, F. Okino, T. Ohba, K. Kaneko and H.
Kanoh, Chem. Eur. J., 2009, 15, 7549–7553; (b) S. R. Caskey,
A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008,
3
6
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins