ORGANIC
LETTERS
2011
Vol. 13, No. 9
2168–2171
Utilization of Natural Sunlight and Air in
the Aerobic Oxidation of Benzyl Halides
Yijin Su,† Liangren Zhang,† and Ning Jiao*,†,‡
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China, and State Key
Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai
200032, China
Received January 22, 2011
ABSTRACT
A novel, efficient oxidation of R-aryl halogen derivatives to the corresponding r-aryl carbonyl compounds at room temperature has been
disclosed. Natural sunlight and air are successfully utilized in this approach through the combination of photocatalysis and organocatalysis.
A plausible mechanism was proposed on the basis of the mechanistic studies.
The utilization of natural solar energy,1 as well as
molecular oxygen as the ideal oxidant,2 are arguably two
of the most important scientific and technical challenges
due to their secure, clean, green, and sustainable charac-
ters. Although employing visible light absorbing photo-
catalysts such as Ru(II)polypyridine complexes in the
photochemical synthesis for those substrates which cannot
absorb visible light has recently attracted great attention,3ꢀ5
visible light absorbing photocatalysts inducing aerobic oxi-
dative transformation with sunlight excitation are still
limited and pose a challenging task.6,7 Recently, Zen and
co-workers6a made a significant contribution toward the
visible light photocatalytic oxidation of sulfides to sulfox-
ides employing Ru(bpy)32þ as a photoredox catalyst, while
the group of Ma and Zhao7 developed the visible light
induced aerobic oxidation of alcohols in a dye-sensitized
TiO2 and TEMPO system. On the other hand, MacMillan
and co-workers pioneered the merger of the photoredox
catalysis and their enamine catalysis on the enantioselective
R-alkylation and R-fluoroalkylation of aldehydes.4b,c With
the booming of organocatalysis in the past decades,8 it is
† Peking University.
‡ Chinese Academy of Sciences.
(1) (a) Ciamician, G. Science 1912, 36, 385. (b) Esser, P.; Pohlmann,
B.; Scharf, H.-D. Angew. Chem., Int. Ed. 1994, 33, 2009. (c) Funken,
€
K.-H.;Ortner, J. Z. Phys. Chem. 1999, 213, 99. (d) Oelgelmoller, M.; Jung,
C.; Mattay, J. Pure Appl. Chem. 2007, 79, 1939. (e) Fagnoni, M.; Dondi,
D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725. (f) Hoffman, N.
Chem. Rev. 2008, 108, 1052. (g) Protti, S.; Fagnoni, M. 2009, 8, 1499.
(2) (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005,
105, 2329. (b) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400.
(3) For some reviews, see: (a) Gust, D.; Moore, T. A.; Moore, A. L.
Acc. Chem. Res. 1993, 26, 198. (b) Zeitler, K. Angew. Chem., Int. Ed.
2009, 48, 9785. (c) Yoon, T. P.; Ischay, M. A.; Du, J. Nature Chem. 2010,
2, 527. (d) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev.
2011, 40, 104.
(5) For some other examples for visible light induced aerobic oxida-
tion reactions using halide salts as initiator, see: (a) Hirashima, S.; Itoh,
A. Green Chem. 2007, 9, 318. (b) Tada, N.; Ban, K.; Hirashima, S.;
Miura, T.; Itoh, A. Org. Biomol. Chem. 2010, 8, 4701. (c) Kanai, N.;
Nakayama, H.; Tadaþ, N.; Iꢀtoh, A. Org. Lett. 2010, 12, 1948. For an
example using AcrPh ClO4 as a photocatalyst, see: (d) Ohkubo, K.;
Fukuzumi, S. Org. Lett. 2010, 12, 3647.
(6) (a) Zen, J.-M.; Liou, S.-L.; Kumar, A. S.; Hsia, M.-S. Angew.
Chem., Int. Ed. 2003, 42, 577. (b) Perez, D.; Grau, M. M.; Arends, I. W.
C. E.; Hollmann, F. Chem. Commum. 2009, 6848.
(7) Zhang, M.; Chen, C. C.; Ma, W. H.; Zhao, J. C. Angew. Chem.,
Int. Ed. 2008, 47, 9730.
(8) For some recent reviews on organocatalysis, see: (a) List, B.
Chem. Rev. 2007, 107, 5413. (b) Dondoni, A.; Massi, A. Angew. Chem.,
Int. Ed. 2008, 47, 4638.
(4) For some recent examples, see: (a) Okada, K.; Okamoto, K.;
Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401. (b)
Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77. (c) Nagib,
D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131,
10875. (d) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am.
Chem. Soc. 2008, 130, 12886. (e) Chen, W.; Rein, F. N.; Rocha, R. C.
Angew. Chem., Int. Ed. 2009, 48, 9672. (f) DeClue, M. S.; Monnard,
P. A.; Bailey, J. A.; Maurer, S. E.; Collis, G. E.; Ziock, H. J.; Rasmussen,
S.; Boncella, J. M. J. Am. Chem. Soc. 2009, 131, 931. (g) Narayanam,
J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009,
131, 8756. (h) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604. (i)
ꢀ
ꢀ
Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2010, 132, 1464.
r
10.1021/ol2002013
Published on Web 03/29/2011
2011 American Chemical Society