4186
R. Parmar et al.
PAPER
1H NMR (300 MHz): d = 7.15 (2 H, d, J = 8.3 Hz, H-Tol), 7.12 (1
H, d, J = 2.0 Hz, H5), 7.07 (2 H, d, J = 8.3 Hz, H-Tol), 6.58–6.45 (4
H, m, H7, H8, H13, H15), 6.40 (1 H, dd, J = 7.7, 2.0 Hz, H16), 6.30
(1 H, d, J = 1.7 Hz, H12), 3.40 (1 H, ddd, J = 12.4, 10.2, 1.9 Hz, H2),
3.27 (1 H, ddd, J = 15.5, 12.1, 5.7 Hz, H1), 3.13–2.83 (5 H, m, H1,
2 × H9, 2 × H10), 2.76 (1 H, ddd, J = 13.0, 10.6, 5.5 Hz, H2), 2.32
(3 H, s, CH3).
13C NMR (75 MHz): d = 141.4, 141.1, 140.0, 139.6, 136.8, 136.7,
135.5, 133.7, 133.3, 132.8, 132.4, 132.3, 130.4, 130.2, 129.5, 128.6,
35.7, 35.3, 34.8, 34.2, 21.5.
IR (neat): 3490, 3155, 2926, 2856, 1784, 1700, 1621, 1463, 1413,
1387, 1244, 1212, 1155, 1033, 1081, 911, 895, 730 cm–1.
1H NMR (500 MHz): d = 7.12 (1 H, d, J = 1.8 Hz, H5), 6.98 (1 H,
dd, J = 8.0, 1.9 Hz, H13), 6.64 (1 H, dd, J = 7.7, 1.9 Hz, H16), 6.61
(1 H, dd, J = 7.8, 1.9 Hz, H15), 6.47 (1 H, dd, J = 7.8, 1.8 Hz, H7),
6.45 (1 H, dd, J = 3.0, 1.6 Hz, H19), 6.37 (1 H, dd, J = 8.0, 1.8 Hz,
H12), 6.33 (1 H, dd, J = 7.8, 0.9 Hz, H8), 5.86 (1 H, ddd, J = 4.7,
3.0, 1.5 Hz, H22), 3.99 (1 H, dddd, J = 6.5, 4.9, 3.2, 1.6 Hz, H17),
3.47–3.41 (2 H, m, H1, H2), 3.33 (1 H, dd, J = 13.5, 9.4 Hz, H1),
3.03–3.39 (4 H, m, 2 × H9, 2 × H10), 2.81–2.77 (1 H, m, H20), 1.83
(3 H, s, CH3-24), 1.24 (3 H, d, J = 7.3 Hz, CH3-23).
13C NMR (75 MHz): d = 141.0 (C), 139.4 (C), 138.7 (C), 138.3 (C),
137.6 (CH), 137.7 (CH), 137.0 (C), 134.5 (CH), 134.2 (CH), 134.2
(C), 134.1 (CH), 132.6 (CH), 132.1 (CH), 130.8 (CH), 121.9 (CH),
50.8 (CH), 44.4 (CH2), 35.5 (CH), 35.1 (CH2), 35.0 (CH), 34.7
(CH2), 21.2 (CH3), 19.3 (CH3).
MS (EI+): m/z = 330 [M]+, 315 [M – CH3]+, 226, 211, 134, 105, 91.
HRMS-EI: m/z found 353.1334425 [M + Na]+; C23H22S + Na [M +
Na]+ requires 353.1337260.
(Rp)-22b
Mp 172–173 °C; Rf = 0.7 (2:1 petrol–EtOAc).
MS (EI+): m/z = 359 [M]+, 343 [M – O]+, 329, 255, 238, 224, 207,
192, 178, 165, 150, 138, 124, 104, 91.
HRMS-EI: m/z found: 361.1643080 [M + H]+; C24H25SO [M + H]+
IR (neat): 3583, 3400, 3052, 2927, 2852, 2305, 1579, 1490, 1470,
1449, 1265, 1087, 1051, 1017, 947, 896, 871, 838, 810, 700, 704,
665 cm–1.
requires 361.1620625.
1H NMR (500 MHz): d = 6.98 (2 H, d, J = 8.0 Hz, H-Tol), 6.91 (2
H, d, J = 8.2 Hz, H-Tol), 6.71 (1 H, d, J = 1.8 Hz, H12), 6.58 (1 H,
d, J = 7.7 Hz, H15), 6.55 (1 H, d, J = 7.8 Hz, H16), 6.50 (1 H, d,
J = 1.7 Hz, H8), 6.46 (1 H, d, J = 1.8 Hz, H7), 6.27 (1 H, d, J = 1.7
Hz, H5), 3.70 (1 H, ddd, J = 9.1, 9.1, 10.6 Hz, H2), 3.50 (1 H, ddd,
J = 10.9, 8.1, 8.1 Hz, H1), 3.11–2.87 (6 H, m, H1, H2, 2 × H9,
2 × H10), 2.38 (3 H, s, CH3-C13), 2.26 (3H, s, CH3-Tol).
13C NMR (75 MHz): d = 142.4, 140.0, 139.0, 138.1, 138.0, 137.5,
135.4, 135.1, 134.0, 134.0, 133.9, 133.4, 132.4, 130.2, 129.5, 127.9,
34.9, 34.8, 32.9, 32.7, 20.9, 20.6.
Supporting Information for this article is available online at
are X-ray crystallographic data for all diastereoisomers of sulfoxide
9, bromides (Sp,SS)-15 and (Rp,SS)-15 and polycyclic 23, as well as
figures highlighting salient 1H NMR shifts for sulfoxide 9 and poly-
cyclic compounds 23–27 and full experimental for all compounds.
References
MS (EI+): m/z = 344 [M]+, 330, 256, 226, 211, 193, 178, 149, 141,
127, 119, 111, 95.
(1) Brown, C. J.; Farthing, A. C. Nature 1949, 164, 915.
(2) (a) Cram, D. J.; Cram, J. M. Acc. Chem. Res. 1971, 4, 204.
(b) Cram, D. J.; Steinberg, H. J. Am. Chem. Soc. 1951, 73,
5691.
(Sp)-4-Iodo-13-p-tolylsulfanyl[2.2]paracyclophane [(Sp)-22c]
Rf = 0.4 (2:1 petrol–EtOAc).
(3) (a) de Meijere, A.; Konig, B. Synlett 1997, 1221. (b) Bräse,
S. In Asymmetric Synthesis - The Essentials; Christmann,
M.; Bräse, S., Eds.; Wiley-VCH: Weinheim, 2007, 67.
(c) Modern Cyclophane Chemistry; Gleiter, R.; Hopf, H.,
Eds.; Wiley-VCH: Weinheim, 2004. (d) Cyclophane
Chemistry; Vögtle, F., Ed.; Wiley: Chichester, 1993.
(e) Classics in Hydrocarbon Chemistry; Hopf, H., Ed.;
Wiley-VCH: Weinheim, 2000. (f) Aly, A. A.; Brown, A. B.
Tetrahedron 2009, 65, 8055. (g) Vu, T. T.; Badre, S.;
Dumas-Verdes, C.; Vachon, J. J.; Julien, C.; Audebert, P.;
Senotrusova, E. Y.; Schmidt, E. Y.; Trofimov, B. A.; Pansu,
R. B.; Clavier, G.; Meallet-Renault, R. J. Phys. Chem. C
2009, 113, 11844. (h) Bazan, G. C. J. Org. Chem. 2007, 72,
8615. (i) Kattnig, D. R.; Mladenova, B.; Grampp, G.; Kaiser,
C.; Heckmann, A.; Lambert, C. J. Phys. Chem. C 2009, 113,
2983. (j) Morisaki, Y.; Murakami, T.; Sawamura, T.; Chujo,
Y. Macromolecules 2009, 42, 3656. (k) Schlotter, K.;
Boeckler, F.; Hubner, H.; Gmeiner, P. J. Med. Chem. 2006,
49, 3628. (l) Bondarenko, L.; Hentschel, S.; Greiving, H.;
Grunenberg, J.; Hopf, H.; Dix, I.; Jones, P. G.; Ernst, L.
Chem. Eur. J. 2007, 13, 3950. (m) Furo, T.; Mori, T.; Wada,
T.; Inoue, Y. J. Am. Chem. Soc. 2005, 127, 8242.
(4) Cram, D. J.; Allinger, N. L. J. Am. Chem. Soc. 1955, 77,
6289.
1H NMR (500 MHz): d = 7.00 (1 H, d, J = 1.8 Hz, H5), 6.97 (2 H,
d, J = 8.0 Hz, H-Tol), 6.91 (2 H, d, J = 8.3 Hz, H-Tol), 6.74 (1 H, d,
J = 1.9 Hz, H12), 6.61 (1 H, d, J = 7.9 Hz, H15), 6.58 (1 H, d, J =
1.3 Hz, H7), 6.55 (1 H, d, J = 1.8 Hz, H16), 6.52 (1 H, dd, J = 7.7,
0.6 Hz, H8), 3.80 (1 H, ddd, J = 13.5, 9.9, 3.8 Hz, H2), 3.61 (1 H,
ddd, J = 13.7, 9.9, 3.7 Hz, H1), 3.16–2.94 (6 H, m, H1, H2, 2 × H9,
2 × H10), 2.25 (3 H, s, CH3)
MS (EI+): m/z = 456 [M]+, 225, 211, 178, 113.
Limited data due to decomposition of the product.
<2>(1,4)-Benenzo-<1>(6,9)-2,3-dimethyl-9,9a-dihydro-3H-
thioxanthenophane-10-oxide (23)
n-BuLi (2.5 M in hexanes, 0.21 mL, 0.52 mmol, 2.2 equiv) was add-
ed dropwise to (i-Pr)2NH (0.68 mL, 0.52 mmol, 2.2 equiv) in THF
(1.7 mL) at 0 °C. The mixture was stirred for 40 min at 0 °C and 20
minutes at –78 °C. (Sp,Rs)-4-p-Toluenesulfinyl[2.2]paracyclophane
[(Sp,Rs)-9; 0.08 g, 0.23 mmol, 1.0 equiv] in THF (2.9 mL) was add-
ed via cannula to produce a deep red colouration. The reaction mix-
ture was stirred at –78 °C for 70 min, then MeI (0.02 mL, 0.23
mmol, 1.0 equiv) was added dropwise causing the reaction mixture
to clear. The reaction was stirred for 4 h, whilst the cold bath slowly
warmed, before sat. aq NH4Cl (5 mL) was added. The organic phase
was separated and the aqueous layer was extracted with CH2Cl2
(3 × 5 mL). The combined organics layers were washed with brine
(3 × 5 mL), dried (MgSO4) and concentrated. The residue was puri-
fied by column chromatography on silica gel (gradient elution
petrol to petrol–EtOAc, 2:1) to yield 23 as light brown crystals (0.03
g, 16%); mp 194–195 °C; Rf = 0.1 (2:1 petrol–EtOAc).
(5) Gibson, S. E.; Knight, J. D. Org. Biomol. Chem. 2003, 1,
1256.
(6) Rozenberg, V.; Sergeeva, E.; Hopf, H. In Modern
Cyclophane Chemistry; Gleiter, R.; Hopf, H., Eds.; Wiley-
VCH: Weinheim, 2004, 435.
(7) This argument was originally stated in reference 5. Chemists
that have worked with [2.2]paracyclophane might argue that
Synthesis 2010, No. 24, 4177–4187 © Thieme Stuttgart · New York