Journal of the American Chemical Society
Communication
been the typical substitution pattern for our previous molecular-
wire voltage sensors and many PeT-based analyte sensors.15−17
Experiments are underway to probe the nature of this voltage
sensitivity enhancement as well as to apply this substitution
pattern to future generations of voltage-sensitive dyes and other
sensing platforms.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Synthetic details and additional data (PDF)
Movie of RhoVR 1 and GCaMP6s fluorescence (AVI)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors acknowledge generous support from the University
of California, Berkeley, the Hellman Foundation, the March of
Dimes (5-FY16-65), the Alzheimer’s Association (2016-NIRG-
394290), and the NIH (R00 NS07581). R.U.K. was supported in
part by an NIH Chemical Biology Training Grant (T32
GM066698). Confocal imaging was performed at the CRL
Molecular Imaging Center, UC Berkeley, supported by the
Helen Wills Neuroscience Institute. We thank Dr. Alison Walker
and Pei Liu for expert technical assistance with neuronal cultures
and Dr. Hasan Celik for help with VT-NMR studies.
Figure 3. Simultaneous two-color imaging of voltage and Ca2+ in
hippocampal neurons using RhoVR 1 and GCaMP6s. (a) The green
trace shows the relative change in fluorescence from Ca2+-sensitive
GCaMP6s, while the magenta trace depicts relative fluorescence
changes in RhoVR 1 fluorescence from neuron 1 in (b). The inset
shows an expand time scale of the boxed region. (b) DIC image of
neurons expressing GCaMP6s and stained with RhoVR 1. (c)
Fluorescence image showing membrane localization of RhoVR 1
fluorescence from neurons in (b). (d) Fluorescence image of neurons in
(b) showing GCaMP6s fluorescence. Scale bar is 20 μm. (e) Traces
showing the activity of each neuron in (b−d), displayed as the fractional
change in voltage-sensitive RhoVR 1 fluorescence vs time. (f−h)
Regions of the traces in (e) are shown on an expanded time scale to
compare the spike timing of imaged neurons.
REFERENCES
(1) Engl, E.; Attwell, D. J. Physiol. 2015, 593, 3417.
(2) Levin, M. Mol. Biol. Cell 2014, 25, 3835.
■
(3) Peterka, D. S.; Takahashi, H.; Yuste, R. Neuron 2011, 69, 9.
(4) (a) Braubach, O.; Cohen, L. B.; Choi, Y. Adv. Exp. Med. Biol. 2015,
859, 3. (b) Loew, L. M. Adv. Exp. Med. Biol. 2015, 859, 27. (c) Miller, E.
W. Curr. Opin. Chem. Biol. 2016, 33, 74.
(5) Miller, E. W.; Lin, J. Y.; Frady, E. P.; Steinbach, P. A.; Kristan, W. B.,
Jr.; Tsien, R. Y. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 2114.
(6) Woodford, C. R.; Frady, E. P.; Smith, R. S.; Morey, B.; Canzi, G.;
Palida, S. F.; Araneda, R. C.; Kristan, W. B., Jr.; Kubiak, C. P.; Miller, E.
W.; Tsien, R. Y. J. Am. Chem. Soc. 2015, 137, 1817.
(7) Grenier, V.; Walker, A. S.; Miller, E. W. J. Am. Chem. Soc. 2015, 137,
10894.
(8) Li, L. S. Nano Lett. 2007, 7, 2981.
(9) Huang, Y.-L.; Walker, A. S.; Miller, E. W. J. Am. Chem. Soc. 2015,
137, 10767.
(10) Chen, T. W.; Wardill, T. J.; Sun, Y.; Pulver, S. R.; Renninger, S. L.;
Baohan, A.; Schreiter, E. R.; Kerr, R. A.; Orger, M. B.; Jayaraman, V.;
Looger, L. L.; Svoboda, K.; Kim, D. S. Nature 2013, 499, 295.
(11) Mirabdolbaghi, R.; Dudding, T. Org. Lett. 2012, 14, 3748.
(12) Clark, R. B.; Hunt, D. K.; Plamondon, L.; Sun, C.; Xiao, X.-Y.;
Roenn, M. (Tetraphase Pharmaceuticals). WO2010132670A2, 2010.
(13) Mudd, G.; Pi, I. P.; Fethers, N.; Dodd, P. G.; Barbeau, O. R.; Auer,
M. Methods Appl. Fluoresc. 2015, 3, 045002.
(14) Jaafari, N.; Vogt, K. E.; Saggau, P.; Leslie, L. M.; Zecevic, D.;
Canepari, M. Adv. Exp. Med. Biol. 2015, 859, 103.
(15) Minta, A.; Kao, J. P. Y.; Tsien, R. Y. J. Biol. Chem. 1989, 264, 8171.
(16) Dodani, S. C.; He, Q. W.; Chang, C. J. J. Am. Chem. Soc. 2009, 131,
18020.
shifted probe, BeRST 1 (ΔF/F = 24% per 100 mV).9 Although
the excitation and emission spectra of RhoVR 1 are blue-shifted
relative to those of BeRST 1, the TMR optical profile still
provides ample spectral separation to perform two-color imaging
alongside other optical probes, such as GFP and the GCaMP
family of sensors. Using a combination of GCaMP6s and RhoVR
1, we simultaneously imaged Ca2+ transients and membrane
potential depolarizations in cultured hippocampal neurons,
establishing that RhoVR 1 and related compounds will be useful
for parsing the roles of Ca2+and Vm in living cells.
Taken together, these data demonstrate the utility of
sarcosine-substituted rhodamines dyes for voltage sensing in
living cells. The incorporation of the 2′-carboxylate simplifies the
synthetic route to long-wavelength voltage sensors by avoiding
highly polar sulfonates, which complicate purification, and
subsequent modification with sarcosine prevents the internal-
ization that plagues unfunctionalized xanthene-based voltage
indicators. Inclusion of the free carboxylate on sarcosine provides
a convenient handle for subsequent functionalization and
localization to genetically encoded protein partners or delivery
agents. Furthermore, expansion of PeT-based voltage indicators
to include rhodamines offers a new optical channel for use in
voltage sensing and demonstrates the versatility and generality of
a PeT-based approach to voltage sensing. We were pleasantly
surprised to find that the 5′-substituted rhodamines showed
greater voltage sensitivity than the 4′-substituted dye, which has
(17) Egawa, T.; Hirabayashi, K.; Koide, Y.; Kobayashi, C.; Takahashi,
N.; Mineno, T.; Terai, T.; Ueno, T.; Komatsu, T.; Ikegaya, Y.; Matsuki,
N.; Nagano, T.; Hanaoka, K. Angew. Chem., Int. Ed. 2013, 52, 3874.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX